
The Ocean Appliance: Complete Platform
Provisioning for Low-Cost Data Sharing

Bill Howe1 Nicholas Hagerty3 Ethan Van Matre1 David Maier2

Antonio Baptista1 Charles Seaton1 Paul Turner1

1Center for Coastal Margin Observation and Prediction 2Portland State University 3Brown University
Oregon Health & Science University Department of Computer Science Department of Physics

20000 NW Walker Rd 1900 SW 4th Avenue 75 Waterman Street
Beaverton, OR, USA 97006 USA Portland, OR, USA 97201 Providence, RI, USA 02912

Abstract-We report on our progress towards an Ocean
Appliance – envisioned as a complete, pre-built "server-in-a-
box" equipped with an ocean observation database, a forecast
engine, a web server publishing an extensible web interface, a
suite of web services establishing interoperability, and a library
of data ingest and processing functions. Collectively, these
services allow efficient ingest, organization, analysis, and
distribution of observations and model results with minimal on-
site configuration. By packaging the hardware as well as the
software, the effort required to install and adapt the tools to the
environment of the local data provider is minimized,
streamlining the adoption of interoperability standards and
simplifying environmental data management. We report results
from a pilot project using the appliance to support cruise
operations and describe preparations for an upcoming multi-ship
experiment involving real-time telemetry and coordinated,
simultaneous analysis of forecasts and observations.

I. INTRODUCTION

The vision of the Integrated Ocean Observing System
(IOOS) [20] as a "system of systems" that interoperate via
standard protocols has been well-articulated in the literature [3]
[14][17][20][26]. However, implementation and deployment
of production systems has thus far been primarily a grassroots
effort, with individual Regional Associations working to
balance their customers’ immediate needs against long-term
goals of national interoperability. Observing that these
providers do not necessarily have the resources to erect and
maintain a standards-compliant data server, RA data managers
frequently must (unilaterally) write software on their behalf.
In this paper, we propose a model for managing this
relationship between software providers and data providers in
the oceanographic community by provisioning a complete
package of hardware and software in order to reduce
development, deployment, and maintenance costs.

The software provided by the Regional Associations and
other data aggregators is intended to “IOOS-enable” their
constituent local data providers: data files produced by the
instruments and data loggers are published in IOOS-compliant
formats; e.g., Web Feature Service (WFS) [24], Web Mapping
Service (WMS) [25], Sensor Observation Service (SOS) [3],
Sensor Model Language (SensorML) [23], Simple Object

Access Protocol (SOAP) [39]. The question of interest to us is
this: Where and how should such software be deployed?

A natural choice is to collect raw data in a central
clearinghouse before processing, but the poor scalability of
this centralized approach directly motivated the IOOS design
of a system of systems.

An alternative is to disseminate software to the data
providers for installation on their local platforms. We have
directly encountered at least two problems with this latter
approach. First, the cost of supporting and maintaining
software in multiple unfamiliar and uncontrolled environments
is prohibitively high. For example, must the authors ensure
that their code runs properly on both Linux and Windows?
Which distributions of Linux? What versions of various
libraries must the user have installed? Second, local data
providers may raise legitimate security concerns about
running unfamiliar software on protected platforms, especially
when the software could potentially interfere with data
acquisition.

To solve these problems, we carry the idea of software
distribution one step further, and propose to distribute
complete platforms known as appliances [4][17][40]. The
appliance model of system provisioning is a delivery model in
which hardware, software, and interfaces are built and bundled
as a complete package that contains no “user-serviceable
components.” When failure occurs, the entire appliance is
replaced as a unit with a new, pre-configured system. This
approach limits the uncertainty implied by installing software
in heterogeneous environments, which in turn limits the cost
of maintenance, either by the customers themselves or by the
software suppliers in the form of technical support. Further,
system administrators are able to “quarantine” the appliance to
assuage security concerns. That is, local computers can read
from and write to the appliance, but the appliance cannot read
from or write to any network resources.

Perhaps a familiar example of an appliance is a digital video
recorder for your television [32]. These devices contain a
conventional computer of minimal performance, a hard drive,
a network interface, and some specialized peripherals such as
an infrared for responding to commands from a hand-held
remote. In addition to the hardware, these devices provide

specialized software – a streamlined operating system, a user
interface, network communications for downloading television
schedules, and little else. The same capabilities are available
in a laptop computer quipped with the proper software (and a
remote), but packaging them as an appliance lowers the cost
of technical support and reduces the installation effort for the
consumer.

Similar appliance models of service deployment are used by
Rackable, Inc. [26] and Sun Microsystems, Inc. [30] and for
managing massive data centers – thousands of cores are
packaged into one ready-to-deploy shipping container and
managed as an atomic unit. The observation is that this
approach can alleviate configuration and administrative
burdens normally associated with maintenance of distributed
systems. The appliance model is also projected to become the
dominant model of computing resource provision, according
to a report by the Gartner Group [28].

In this paper, we present the design and architecture of the
Ocean Appliance, as well as the holistic properties of a multi-
appliance system. The capabilities of the Ocean Appliance are
currently modest but demonstrably satisfy our requirements
for previous and planned experiments. Each unit can 1) ingest
data in a variety of common formats, 2) communicate and
share data with other appliances, 3) serve observations and
model results via relevant standards, and 4) generate and serve
a variety of data products and visualizations. The appliance
provides a local abstraction to the national IOOS system of
systems without requiring data providers to be individually
responsible for implementing the evolving IOOS standards.

We report on our experience using the appliance model to
manage a cruise integrating real-time observations with the
predictive capabilities of the CORIE forecasting system [1].
Finally, we describe an upcoming experiment involving three
coordinated vessels linked by Ocean Appliances.

II. DESIGN PRINCIPLES

The design of the Ocean Appliance is informed by the
following guiding principles:

Ubiquity of Information. Data ingested into one Ocean
Appliance will be publicly available to other Ocean
Appliances; the system is not intended for use as a private
server.

Ubiquity of Services. Products and services available on
one Ocean Appliance can be transferred to another Ocean
Appliance and executed without adaptation or reconfiguration.

Extensibility. New products and services should be easy to
develop and trivial to deploy. For example, the multi-variable
depth profile plot in Figure 1 was derived from a related single
variable profile plot. Both are parameterized by vessel, cruise,
and cast ID, and published to the web as dynamic, interactive,
reusable products. Further, both products can be transferred to
other appliances in keeping with the Ubiquity of Services
principle.

Besides new products, we specifically encourage the reuse
of existing products in new product ensembles. We envision
rapid development of task-specific interfaces. For example,
we developed the Cast Dashboard (Figure 2) by assembling a
selection of existing products useful for decision support and
CTD cast analysis. We adopt a “factory” model of product
generation: users do not define products themselves, but rather
product specifications that can be used to generate many
related products.

The built-in extensibility lowers the barrier of entry and
allows adopters to "pay as they go", expending incremental
effort for incremental returns; this approach is increasingly
recognized as a crucial criterion of success in large-scale data
management projects [10].

Interactivity. The appliance should supply data products
for immediate consumption by end user in addition to
programmatic interfaces. That is, the appliance will consider
the needs of end users and application developers equally. For
example, the cast profile plot in Figure 2 is a visualization and
therefore intended for human eyes. However, all observation
products, including this one, are equipped with a simple
“Download as ASCII” link (upper right) providing
programmatic access to the exact dataset displayed in the plot.

Low Cost. The total cost of ownership of the appliance
should be low enough to be installed and maintained by small
observatories. Specifically, we strive for minimal on-site
configuration. Once attached to power and network resources,
data ingest can begin by attaching a serial cable, by copying
files, or configuring a periodic download.

Figure 1: A cast profile product displaying multiple variables
simultaneously. This product is dynamically generated, reusable
in many contexts, and parameterized by cast number, vessel, and

cruise. It is encoded with one SQL statement and 25 lines of
Matlab-style code, most of which was derived from an existing,

simpler product.

Security. The appliance must not rely on access to user
credentials on remote machines, shared file systems, or other
secure resources for typical operation.

Unobtrusiveness. The appliance should have a small
physical footprint and not require a monitor or keyboard to be
connected for initial installation and ongoing operation.
Further, it should not exhibit unusual power requirements or
make excessive noise, allowing it to be installed anywhere.

Robustness. The appliance should recover from faults and
inadvertent power cycling without user intervention. The
appliance should be able to be deployed in harsh environments
– e.g., on a research vessel or in an open-air base station. We
do not require that the appliances survive immersion or direct
weather.

Open Source. Our appliance design serves an exemplar and
demonstration of the appliance model. We encourage other
groups to unilaterally experiment with and extend our design.
Commensurately, the appliance has been developed using
open source software exclusively.

III. MANAGING DIVERSITY

We consider diversity to be the primary challenge in
managing oceanographic data. Although the appliance model
combats diversity by eliminating several potential sources
(computing environments, hardware, configurations), the
challenge is still formidable. Consider the following sources:

A. Diverse Variables
We think of the Conductivity Temperature Depth (CTD)

assemblages and the Acoustic Doppler Profiler (ADP) or
equivalent .as the workhorses of observational physical
oceanography. Considering only these two devices, we
already generate a broad set of requirements for a common
“data model.” The CTD reports a timeseries of point
observations, while the ADP reports a timeseries of an array
of 3-d vectors. The temperature sensor inside a CTD is robust,
reliable, and requires modest maintenance, while the
conductivity sensor can become severely bio-fouled in
estuarine environments, requiring estimates of quality for
proper interpretation [1].

These physical observations are increasingly augmented
with biological observations, including the concentration of
dissolved oxygen, nitrate, chlorophyll, and other ecological
variables to provide a more complete picture of the state of the
ocean, its effect on ecology and, ultimately, its effect on
human health. These quantities are often linked to water
samples, which in turn generate electrophoresis gels, DNA
sequences, and annotations derived from genomic databases.

B. Diverse Sensor Platforms
Oceanographic sensors can be deployed on a variety of

platforms, including fixed moorings for long-term coverage of
strategic locations, moorings with vertical profiling
capabilities, anchored buoys, passive drifters, vessels,
undulating gliders, unmanned underwater vehicles (UUVs),

aircraft, and satellites. For a fixed mooring, the location of the
measurements rarely or never changes, so re-transmitting
latitude and longitude with each individual measurement is
wasteful and potentially misleading (in relational terms, the
functional dependency between the sensor identifier and the
coordinates is not captured.) However, other platforms
generate observations following more dynamic trajectories in
time and space; for example, vessels, (and prospectively,
UUVs and gliders) may break pre-defined cruise plans to
follow a strong salinity gradient to its source. Observations
may not even be points in space and time: Satellites and land-
based High Frequency Radar systems are capable of
measuring wave height and surface velocity over a wide area
simultaneously. Measurements are in this case reported as a
"grid" of data, a data structure that carries a challenging set of
requirements in its own right [8]. The diversity of platforms
leads to a diversity in requirements: even a "lowest common
denominator" data model must thus be rather sophisticated.

C. Diverse Applications
The appropriate interface to ocean observation data, as with

any other kind of data, should be driven by the requirements
of the applications that will exercise it. Here again, though,
we find remarkable diversity. Long-term, gapless, quality-
controlled coverage of a point or region is most useful for
scientific applications to gain insight into low-frequency
signals such as the effect of climate change on salmon
habitability. However, decision support applications such as
search and rescue often require real-time access to any and all

Figure 2: Dynamic product ensemble crafted for CTD cast analysis and
ship-board decision support. Upper left: Context information for the

slected cruise providing current time, current location, most recent cast
location. Upper right: Map showing cruise trajectory against the bottom

salinity as reported by the best available forecast. This quadrant also
displays a tide chart extracted from a NOAA website. Bottom left: A

table of observations reported by the selected CTD cast. Bottom right:
One of several real-time plots available based on cast observations.

observations that might be useful (wind, surface velocity,
temperature), even if their quality is not fully known.

D. Diverse Data Providers
Although some operators of oceanographic sensors have

established budgets for building and maintaining sophisticated
data management software, this situation is far from universal.
Many sensor platforms are operated by small colleges or local
government agencies with limited information technology
resources. A successful data management system should
accommodate both extremes of sophistication: it should be
easy to implement a minimally compliant programmatic
interface (basic search, browse, and query), but it should be
sufficiently extensible to accommodate advanced features
when required.

A poor example of a good standard for data access and
exchange is a rich query language, perhaps based on
Structured Query Language (SQL). Local observatories may
not have the resources to design and deploy a relational
database system, nor can they be expected to parse, plan,
optimize, and execute complex queries over their native files.
Consumers of these observation streams would need to fall
back on old habits; e.g., downloading and parsing ASCII files
via FTP and custom scripts, respectively.

IV. ARCHITECTURE

There are five components to the appliance architecture: the
basic platform stack (hardware, operating system, database,
web server), ingest procedures, visualization capabilities,
telemetry, and standards-compliant web services for data
access.

A. Platform Stack: Hardware, Operating System,
Database, Web Server

The chassis is shown in Figure 3. The current appliance
platform is based on commodity hardware. The Antec
NSK1300 enclosure is rugged, compact and has sufficient
cooling to support modern motherboards and peripherals. The
footprint is modest: 12.5" x 7.5" x 7.5" high. Included in the
enclosure is a 350 watt power supply with a 100mm variable
speed fan.

In keeping with the idea to use commercial hardware
selected to work in shipboard environments this enclosure
houses an Intel D102GGC2 motherboard. This motherboard is
in the MicroATX form factor and includes onboard USB,
SATA, IDE, and 10/100 Ethernet interfaces. We outfit the
motherboard with 2 GB memory and a Dual Core 3.0 GHz
Pentium CPU. Storage devices include 250 GB SATA disk
drive and a CDROM or DVD for data loading. The total cost
of the hardware is approximately $550.

For connectivity with instruments, we installed 2 dual port
serial cards based on 16C550 compatible UARTs. This gives
us 4 serial ports without requiring software support from the
operating system. The first port is configured to allow a user
to login to the system in case of network failure (we cannot
rely on a keyboard, mouse, or monitor available for
attachment.) The other three reserved for serial I/O devices.

The operating system is Fedora Core 6, since it is widely
supported by hardware vendors, it is licensed under GPL, and
since the open source community provides timely updates
consisting of both security patches and functional
enhancements.

Initially we deployed the x486-based “bricks” with
OpenBSD. This OS required a license fee be paid and had
limited community support. Additionally, it came
preconfigured with extensive security features, which limited
our ability to respond in the field to changing mission
requirements.

The database system is implemented with PostgreSQL [30]
with geographic extensions supplied by PostGIS [26]. The
database design is two-tiered: There is an integrated schema
capturing observations in a generic manner that we refer to as
Ocean Observing System Database (OOSDB) [11].
Observations are grouped into a single table regardless of their
source. Metadata providing provenance for the observations
are organized in a similarly generic manner: each observation
is linked to a mission and a sensor configuration. The sensor
configuration identifies the variable, the units, the rank (i.e.,
vector or scalar), and any calibration information needed for
proper interpretation. Unit conversion formulas can be
explicitly recorded in the database, allowing transparent
conversions to avoid queries that return nonsensical mixed
units. The mission identifies the platform, the experiment, the
owning agency and other operational metadata. An entity-
relationship diagram for the integrated schema appears in
Figure 4.

Figure 3: The external chassis of the Ocean Appliance.

To address the diversity of variables, each stream of
observations is decomposed into individual measurements,
each recorded at a unique space and time. Specifically, each
observation is keyed on three attributes: time, location,
and depth. The time attribute has type TIMESTAMP
WITH TIME ZONE as described in the SQL standard and as
implemented in PostgreSQL. This data type physically
represents all times in UTC but allows ingest and transparent
conversion of data from any time zone. The location
attribute has type GEOMETRY, a data type supplied by the
PostGIS extensions to manage geographic coordinate
transformations and map projections, allowing data to be
properly projected onto maps in arbitrary coordinates. The
depth column is a user-defined type consisting of a numeric
value and a datum. We have not yet implemented transparent
datum conversion functions for depths.

The value attribute of the observation table is represented
as an array of floating point numbers. Despite apparent
violation of normalization rules requiring that each attribute
hold an atomic value, this feature has been a part of
PostgreSQL for many years, and has proven its utility. We
use the array to model vectors so that velocity components can
be stored (and therefore retrieved) together.

In addition to the integrated schema, we have a handful of
platform-specific schemas. For example, we have a mooring
schema tailored for simplified ingest and query of data
acquired from fixed mooring. These observations are stored
in separate tables corresponding to each instrument type: ADP,
CTD, and a handful of others. Data loaded into a platform-
specific schema is automatically inserted into the integrated
schema via the rule system of PostgreSQL. Rules allow
incoming queries to be rewritten on the fly to change their
behavior.

The platform-specific schemas exist for two reasons: First,
users who only work with specific platform types find the
integrated schema difficult to understand, and therefore,
difficult to query when developing new data products. Second,
the platform-specific schemas provide a layer of indirection
between user applications and the integrated schema, allowing
us freedom to evolve the integrated schema as we see fit.
These schemas therefore provide what is known as logical
data independence, one of the hallmark benefits of the
relational model.

The web applications are served by the extremely popular
open source Apache web server, and the site is powered by
Drupal, an open source content management system oriented
toward community development with a strong network of
developers and a satisfied customer base. Drupal allows users
to dynamically create and edit their own pages, blogs, forums,
and much more. Content can be authored in HTML under

various levels of restricted syntax, or in PHP itself, allowing
rich applications to be “branded” and formatted automatically.

For mapping applications, we rely extensively on
MapServer [15], a reliable open source GIS workhorse that
integrates tightly with PostGIS. We have deployed more
interactive, dynamic mapping applications using Google Maps
[6] and OpenLayers [26], but find the reliability and
consistency of MapServer are highly desirable for rapid
development of new applications, a feature mandated by our
design principle of extensibility.

B. Observation Ingest
The diversity in variables, sensors, and manufacturers

makes it difficult to homogenize the streams from different
platforms. One solution developed by the Monterey Bay
Aquarium and Research Institute is the PUCK [8], a
programmable hardware device inserted between the sensor
and the acquisition computer that fills in missing metadata
(instrument information, time, location, etc.). We consider the
PUCK to be an excellent use of the appliance model, where
capabilities are deployed in a self-contained hardware and
software package for simplified installation. Unfortunately,
though, we do not always have access to the “final mile” in
the telemetry pipeline – i.e., the connection between the sensor
and the acquisition system. We therefore must be able to
properly interpret data from a variety of sources, including
ASCII files in custom formats, raw NMEA feeds, and
proprietary binary formats interpretable only by
manufacturer’s software.

Beginning over 10 years ago with the CORIE project, our
group has generated a suite of tools for processing a variety of
these heterogeneous data formats. A first step in building the
appliance was to gather these tools into a common library,
refactoring, updating, and rewriting them as necessary. Our
ingest library is written in Python and includes handlers for
CTD cast data, ADCP ping data, and NMEA streams from
ship-board navigation systems.

Much of our CTD cast data is acquired through technology
from Seabird, Inc. To interpret the output of a Seabird sensor,
it is imperative to use the Seabird software directly, as the
processing routines are attenuated to the specific details of the
sensor itself. Unfortunately, this software was not designed
with external programmatic interfaces in mind. We are forced
to run their DOS-based programs on a virtual machine, and
then analyze the ASCII output. In addition to comprehension
of CTD cast data from Sea-Bird Electronics, Inc.[35], we also
have ingesters written for ADCP ping data from SonTek [36]
and RDI [37] devices, as well as an interface to the excellent
University of Hawaii Data Acquisition System (UHDAS) [11]
for processing and quality control of ADCP ping data.

Parsing, along with several other tasks, is the responsibility
of the ingester. The ingester is a streaming query engine
allowing complex filtering pipelines to be composed from
simpler functions. There are two extensible Python classes
that interoperate to manage parsing, logging, cleaning,
metadata attachment, and database insertion. A Scanner
monitors a directory (recursively) for files that satisfy some
condition. Matching files have their contents extracted and
their current size recorded. When the files are modified, the
Linux kernel sends a signal to the scanner indicating that
another read is required. The scanner reads the newly
appended portion of the file and passes the block of unparsed
data along to a pipeline of filters. Each filter object performs
a specific task on a single unit of data: we have filters that log
messages, parse blocks of output, query the database, etc.
Each filter operates in its own thread. A chain of filters are
linked by synchronized queues, so time-consuming or I/O
intensive tasks can overlap with each other, improving overall
performance. For example, the filter that processes the Seabird
output is not particularly efficient due to its dependency on the
original Seabird software. When a new cast is being parsed by
the seabird filter, the previous cast can simultaneously be
loaded into the database; an I/O intensive operation.

Processing pipelines consisting of chained scanners and
filters have been developed for processing data streams from
several instruments on several vessels. Although there are a
few cases where custom scanners were mandated by the non-
standard file formats encountered on the vessel, the pipelines
are usually specific only to a manufacturer, suggesting that
they can be re-used at other institutions. We plan to release
our ingest routines as an open-source library once upcoming
tests are complete.

C. Telemetry and Communications
A core concept of our appliance design is agnosticism with

respect to the underlying network protocols. Our initial
network design was based on 900 MHz “serial modem” radios
running SLIP for point to point connectivity. Routing rules
needed to be configured precisely; mistakes require hands-on
correction.

With the advent of SWAP radios standards based routing
became feasible. Appliances connected to a SWAP radio
obtained network connectivity as they joined a SWAP
network. Making and breaking connection as dictated by ships
movement. SWAP is based on the 802.11b wireless standard
providing up to 11 mbps connectivity. Using a combination of
antennas and power amplifiers we have seen connectivity up
to 40 nautical miles offshore (Figure 4), though typical
connectivity limits are 20 nautical miles offshore with 1 mbps
throughput.

SWAP radio systems are designed as firewalls and do not
allow external connections into the SWAP radio systems. This
limits our appliance to originating network connections. To
address this problem, we have deployed a Cisco ASA5510
Virtual Private Network appliance. When an appliance
appears in range, the client establishes a secure tunnel to the
shore-side network infrastructure. This tunnel is independent
and isolated from the intervening network devices and is able
to allow direct automated or manually initiated network access
to the appliances.

Transfer of application data across the network to remote
appliances is achieved in one of three ways: via FTP of the
raw files, through the web services, and through subscriptions
to relational tables. The subscription service is the primary
mechanism for appliance-to-appliance transfer, for three
reasons. Applications are not intended to access the raw files;
they are included for provenance purposes only. The web
services are not ideal for this purpose for two reasons. First,
although these services provide uniform programmatic access
to all data sources, this uniformity can incur a loss of
information for complex data types. For example, a CTD cast
can be decomposed into individual observations for
compatibility with applications that only understand point
observations. However, the cast structure is important for
cruise-oriented applications: biological samples are labeled
with the "surface," "bottom," and "middle" of the cast during
which they were collected. Labeling the samples with specific
observations does not provide a complete context. Second,
web services do not provide the transactional semantics of a

Figure 4: A fragment of the integrated schema used by the Ocean Appliance to model observations originating from arbitrary sources.

relational database, incurring a durability risk, where the data
is acknowledged as received, but has not necessarily been
committed to permanent storage. For these reasons, we
implement our primary telemetry mechanism using
subscriptions to relational tables directly.

A target appliance subscribes to a table on a host appliance
using a Subscription Broker. The Subscription Broker accepts
two domain names representing two appliances and a table
name as arguments. The first argument is the “source” and the
second argument is the “target.” The Subscription Broker
establishes connections to each database and provides several
methods for manipulating the Subscriptions.

In the current implementation, the Subscribe method creates
a new Boolean column on the table (if necessary) named
unsent_to_target, where target is the name of the target host.
The new column can have three values: NULL, True, and
False. NULL indicates the record was inserted at a time when
the subscription was not active. True indicates the record has
not yet been uploaded to the host. False indicates that the
record has been successfully transmitted from source to target.
In addition to creating the column, the Subscribe method sets
the default to True, meaning that all subsequently inserted
records will be marked for upload to the target host. Existing
records, however, do not have their values updated, for two
reasons: First, updating every record of a large table takes
significant time and can generates many holes that need to be
vacuumed; Second, the subscription semantics are more
flexible this way, since only those tuples that are inserted
while the subscription is active are marked for upload. This
design allows the Unsubscribe method to simply remove the
default value from the column -- it does not need to touch any
data. The Unsubscribe method simply erases the default
setting (at negligible cost), meaning that subsequently inserted
records will default to NULL.

The Subscription Broker also provides methods to drop the
subscription columns. However, since relational databases
cannot efficiently drop columns, this method is rarely used.
We plan to develop a different implementation of the
Subscription Broker that uses triggers on source tables rather
than flag columns. The current approach, however, is more
amenable to schema changes, which are still rather frequent
during prototyping and initial testing.

The Subscription Broker is instructed to retrieve and
transmit unsent tuples by the Transfer method. Since
individual tuples rather than complex objects are transmitted,
there is a possibility that tuples may be transmitted before
other tuples on which they depend, incurring a foreign key
violation in the target database. If foreign keys are violated
during upload, then an exception is raised (thanks to the
integrity constraints enforced by the relational database) and
the tuples are not marked as sent. It is important to therefore
transfer table content in manner that respects the topology of
the schema -- parents should be uploaded before children. A
more sophisticated broker is not difficult to implement: for
each tuple to be uploaded, make sure that any other tuples

referenced via foreign keys are uploaded first. We are
currently exploring this design.

Transmission in unreliable network conditions exposes
starvation and fairness issues: when serving subscriptions for
multiple tables that are all receiving constant updates, all
tables must eventually have their tuples transmitted, and at
more or less the same rate. The Subscription Broker therefore
adopts a simple round-robin scheme, where a configurable
number of tuples are transmitted for one table before moving
onto the next.

The subscription service is agnostic with respect to "push"
or "pull" semantics, and can therefore be run on either host. In
our testbed application, we run the service on the vessels,
since each vessel can see the server without relying on the
VPN.

D. Products and Visualization
We have recently augmented an extensive suite of

“standard” products with dynamic, interactive products,
product ensembles, and full-featured applications. For the
Pilot Experiment in April 2007, we tested the Cruise Mapper,
a MapServer application integrating model results from a
variety of forecasts with nautical charts, bathymetry charts,
and dynamic cruise information.

Observing that the number of products we are capable of
providing to users can be overwhelming we have recently
begun to focus on task-specific interfaces that arrange
specialized products to provide context and information for
scientists to efficiently complete specific tasks. One such
interface is the Cast Dashboard for real-time vessel decision
support.

Figure 5: Cruise path for the April 2007 cruise of the Center for Coastal
Margin Observation and Prediction. The higlighted portions indicate
connectivity with the shore. (a) 20km theoretical limit radio range.

Oregon

Washington (a)

The Cast Dashboard (Figure 2) is a single-screen interface
bringing together a small set of task-specific products and
tools for taking, reviewing and planning CTD casts. Most of
these products and tools either existed previously or were
easily derived from existing ones. The screen is divided into
four quadrants: The top left displays context information about
the current time, vessel and cruise, and the results of the last
cast. The top right can display a small map showing the cruise
path, location of casts, current location, and forecasted bottom
salinity. Clicking on this map redirects the user to the full
controls of the Cruise Mapper. A short menu can change the
top right to a tide chart extracted from a NOAA web site, or a
animation showing forecasted bottom salinity over 72 hours.
The bottom left can display tables of time and location of all
casts or CTD data of one selected cast, or a form for entering
data about water samples and other non-automated cast
metadata. Finally, the bottom right can display one of several
products from the “product factory,” including: a single- or
multi-variable individual cast profile, a cast-model
comparison profile, a timeseries of cast profiles colored by a
selected variable, and a salinity/temperature mixing plot for a
selected cast.

Contrast the task-specific Dashboard with the alternative
model of a comprehensive directory of all available products;
under the constrained conditions of a research cruise, users
cannot waste time browsing for a particular product.

The Cast Dashboard was first deployed on a cruise in July
2007 and was received with enthusiasm.

E. Interoperability via Web Services
Ingested observational data is automatically published via

web services. Specifically, we have been working closely
with the OOSTethys project [3] to develop servers and clients

for the Sensor Observation Service [23]. The SOS standard
specifies a core API of the following three methods:

• GetCapabilities returns information about the data
inventory and supported access methods. This method
is used in support of discovery services.

• DescribeSensor returns metadata of varying detail
about a given sensor. The description format follows a
separate standard that is rapidly gaining momentum:
SensorML [23].

• GetObservation is the basic query primitive for
returning the latest value of a given variable for a given
sensor platform. Additional arguments can be supplied
to filter results by space and time.

As part of our collaboration on OOSTethys, we have
developed PySOS, a pure-Python SOS server for publishing
data from an arbitrary relational database. This service is not
dependent on the OOSDB schema and can be configured to
work with any relational schema by writing just four SQL
queries. The system has been released as open source on the
OOSTethys site [11].

The SOS service hosted at the Center for Coastal Margin
Observation and Prediction (CMOP) is consumed by several
projects, including a real-time water quality pilot project [33]
between the National Association of Networked Ocean
Observing Systems (NANOOS) [18] and the National
Estuarine Research Reserve System (NERRS) [19].

In contrast to point observations, model results of non-
trivial scope cannot be effectively managed in a relational
database due to their size and use of mesh-oriented data
structures and algorithms [8]. We therefore use two strategies
to provide programmatic interfaces to our model results. First,
we have defined a set of web services that emulate real-world
observational platforms, but provide access to the “virtual
ocean” delivered by the model. Specifically, we provide a
web service that returns a depth profile for an arbitrary
variable at arbitrary lat/lon coordinates representing a virtual
CTD cast over the side of a virtual vessel. Using this basic
web service, we derive additional services emulating the flow-
through sensor packages on our research vessels, fixed
moorings including those with vertical mobility, and
additional platforms such as UUVs and autonomous gliders.
Second, we provide a flexible language for expressing more
complex 2-d and 3-d products and serve them over WMS [25].
Using the gridfield language [9], we can efficiently generate
stratification products (surface salinity - bottom salinity),
upwelling metrics (surface temperature – bottom
temperature)/bottom temperature, aggregates over depth,
virtual moorings, and emulate fixed stations.

V. PILOT EXPERIMENT

In April 2007, CMOP conducted its inaugural cruise with
the R/V Wecoma. Cruise goals were to retrieve and deploy
shelf buoys and to collect water samples from CTD casts
along five coastal transects to investigate microbial population
diversity across salinity gradients generated by the Columbia

Figure 6: A data product written in 13 lines of code using the gridfield
algebra. Right pane: Plume of fresh water at the mouth of the Columbia

River. Left pane: areas of maximum salinity gradient illustrating the
plume front.

River plume. This cruise also served as a pilot test of the
Ocean Appliance.

Figure 5 displays a map of the cruise path annotated with (a)
the theoretical limit of the SWAP radio network, and (b) the
locations of successful connectivity between ship and shore.
The fact that connectivity was achieved outside the theoretical
maximum range of the radio technology is attributable to
cloud cover providing a reflective surface. Gaps in
connectivity within the 20 km limit are attributable to areas of
unreliable SWAP coverage.

The intermittent nature of ship-to-shore communications
requires design consideration at the application level.
Specifically, as model results are pushed to the vessel and
observations are pushed to the shore, limited bandwidth must
be allocated carefully. These priority decisions are non-trivial:
For example, the data stream from the navigation computer is
crucial, but can be aggressively down sampled from its source
rate of one observation every three seconds. However,
observations from the CTD device must be packaged as a unit
to guarantee that important features of the profile (e.g., sea
state at sample depths) are preserved for collaborative analysis.

The communication of model results admits more complex
strategies. The results themselves are large: 5 GB for one
simulation day of five primary physical variables (salinity,
temperature, horizontal velocity, vertical velocity, elevation).
Apart from bandwidth considerations, having these
unprocessed results available on the ship is ideal, as the
complete suite of analysis tools are then applicable. However,
the bandwidth of the SWAP network can at times narrow to
15-20 kb/sec, requiring more time to transmit the results than
the period being simulated!

Several alternatives exist: First, the relevant products from
the standard product inventory may be sent to the vessel rather
than the raw output. Isoline animations of the type shown in
Figure 6 are useful for inspecting the gross behavior of
features such as the Columbia River plume; these products
represent several days of simulated time and are 652kB each.
Model-data comparisons are necessary to assess model skill;
these products depend on successful upload of ship
observations. Distributing products only precludes custom
analysis: users and administrators must predict which products
will be most useful.

The spatial and temporal regions of interest are somewhat
easier to predict than the nature of the scientific questions that
might arise, so a second communication strategy is to transmit
only those regions of the model’s domain that are relevant to
the cruise. This approach is conceptually simple, but requires
a sophisticated infrastructure. Specifically, every software
artifact that handles the model results must be designed to
transparently tolerate arbitrary subsets of the full results
regardless of size or shape.

Our progress with this approach has been accelerated by the
gridfield algebra [8], a language for manipulating simulation
results as first class citizens, without regard to their internal
structure. Using gridfields as a subsystem, model results can

be efficiently broken up on the server, selectively and
incrementally delivered to the vessel, and then reassembled as
needed. The system provides a framework in which to
explore and optimize spatio-temporal distribution and
prioritization policies. For example, the region around the
vessel’s planned track can be pre-fetched using the gridfield
system, as can regions of scientific focus, such as the
Columbia River plume and hypoxic zones. Beyond data
delivery optimization, gridfields provide an expressive
language for rapidly developing complex data products. The
product in Figure 6 is expressed in 13 lines of code. The right
pane displays salinity in the region of the plume (the mouth of
the Columbia River is just visible at center-right). The left
pane shows isolines of salinity gradient subjected to a
threshold. The regions of high gradient clearly illustrate the
plume front.

A third strategy for exchanging data with the vessel, and the
one we adopt in our current pilot experiments, is to pre-load
an extended (7-day) forecast on each vessel, then update them
incrementally during port calls. This approach is clearly the
most primitive, but it ensures that a viable model is available
for all regions and all times.

Beyond the upload of observations and download of
forecasts, the April Cruise allowed us to assay our initial
analysis interfaces. The Cruise Mapper was exercised in a
dynamic cruise planning decision. Ahead of schedule, an
extra cast near the plume was considered as a course change.
However, the forecasts displayed in the Cruise Mapper
indicated that the plume had turned northward and was
unlikely to be caught in the allotted time. The on-board
availability of model results visible through the Cruise Mapper
saved significant time and effort.

VI. MULTI-SHIP EXPERIMENT

We envision the Ocean Appliance to support cruises of
evolving complexity, including, starting in 2008, CMOP
cruises requiring the coordination of multiple vessels, an
airplane, two gliders, an UUV, an observation network with
adjustable vertical profiling capabilities, and near-real time
model forecasts.

Towards this goal, the next test will be a coordinated three-
vessel cruise, to be conducted in August 2007. This will be the
first CMOP river-to-ocean cruise, and will include in-context
characterization of microbial communities and activity in high
gradient regions such as estuarine turbidity maxima, plume
fronts, coastal eddies and upwelling regions. The three vessels
will be outfitted with an Ocean Appliance, each differing only
in the “final mile” of the data acquisition procedures.

Informed by the success of the ExView system tested
during the 2006 Shallow Water Survey [14], we plan to
provide near-real time broadcast of a range of observations
(from vessels, the CORIE observation network, and airborne
sensors) and of model simulations to all vessels using
appliance-to-appliance communications. The ExView system

itself was not re-deployable in our environment, as it is tightly
coupled to the specific platforms and equipment in use at
Woods Hole Oceanographic Institute. Our goal is to not only
satisfy the science goals of the cruise, but to test a reusable, re-
deployable system for data ingest and management.

ACKNOWLEDGMENTS

Funding for CORIE and extensions thereof, as well as for
CORIE-based science, has been provided in part by various
programs within the National Science Foundation, National
Oceanic and Atmospheric Administration, US Army Corps of
Engineers, Bonneville Power Administration, US Fish and
Wildlife Service, Office of Naval Research, Oregon
Department of Geology and Mineral Industries, and the City
of Astoria. Funding for the Ocean Appliance has been
provided in part by the National Science Foundation (OCE-
0424602 and ACI-0121475) and the National Oceanic and
Atmospheric Administration through the Northwest
Association of Networked Ocean Observing Systems.

REFERENCES
[1] Archer, C., Baptista, A., Leen, T., Fault Detection for Salinity Sensors in

the Columbia Estuary, Technical Report CSE-02-011, OGI School of
Science & Engineering at Oregon Health & Science University, 2002.

[2] Baptista, A.M., "CORIE: the first decade of a coastal-margin
collaborative observatory," presented at Oceans'06, MTS/ IEEE, Boston,
MA, 2006

[3] Bermudez, L.E., Bogden, P., Bridger, E., Creager, G., Forrest, D., and
Graybeal, J., "Toward an Ocean Observing System of Systems", in
Proceedings of the Oceans'06 MTS/IEEE-Boston September 18-21,
2006.

[4] Codd, E. F., The Relational Model for Database Management: Version 2.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[5] Drupal, http://drupal.org/
[6] Google Maps API, http://www.google.com/apis/maps/
[7] Google search appliance. http://www.google.com/ enterprise/.
[8] Headley, K.L., Davis, D., Edgington, D., McBride, L., O'Reilly, T.C.

Risi, M., Managing sensor network configuration and metadata in ocean
observatories using instrument pucks, The 3rd International Workshop
on the Scientific Use of Submarine Cables and Related Technologies,
2003.

[9] Howe, B. and Maier, D., “Algebraic Manipulation of Scientific
Datasets.” VLDB Journal, 14:4, 2005, pp. 397-416.

[10] Howe, B., Maier, D., “Smoothing the ROI Curve for Scientific Data
Management Applications” Third Biennial Conference on Innovative
Data Systems Research (CIDR), 2007.

[11] Howe, B., PySOS: Generic Sensor Observation Service for Relational
Database Management Systems, released May 2007,
http://www.oostethys.org/ downloads/sos-cookbook-python

[12] Hummon, J., Firing, E., Shipboard ADCP Systems and Heading Sensors
— Status Reports In Proceedings of the International Marine
Technicians Symposium, 2006

[13] Myers, E., A. Zhang, F. Aikman, Y. Zhang, A. Baptista, P. Turner and C.
Seaton. Evaluation and Transition of a Columbia River
Nowcast/Forecast Circulation Model to NOAA’s National Ocean
Service,” extended abstract, Coastal Zone ‘07, Portland, OR, July 2007

[14] Maffei, A., Lerner, S., Lynch, J., Newhall, A., Sellers, C., Glenn, S., Fall,
K., Exview: A Real-Time Collaboration Environment For Multi-Ship
Experiments.

[15] MapServer, http://mapserver.gis.umn.edu/
[16] Martin, James N. “Modeling and Architecture Considerations for

Systems of Systems.” 2004 Systems and Software Technology
Conference, Salt Lake City, UT, 21 Apr. 2004

[17] MBX Systems, MBX Leads Quest Software Into Uncharted Territory –
Appliances,
http://www.motherboardx.com/oem/success_stories/Quest_Software/ind
ex.cfm, viewed August 2007

[18] The National Association of Networked Ocean Observing Systems,
http://www.nanoos.org/

[19] The National Estuarine Research Reserve System,
http://www.nerrs.noaa.gov/

[20] The National Office for Integrated and Sustained Ocean Observations,
Data Management and Communications Plan for Research and
Operational Integrated Ocean Observing Systems, Ocean.US
Publication No. 6, March 2005; Part I: Overview; Section 3:
Governance, Oversight, and Coordination, IOOS/DMAC Standards
Process, page 49

[21] OpenBSD, http://www.openbsd.org/
[22] Ocean.US, 2002. An Integrated and Sustained Ocean Observing System

(IOOS) for the United States: Design and Implementation. Ocean.US,
Arlington, VA.

[23] Open Geospatial Consortium Inc., OpenGIS Sensor Model Language
(SensorML), OpenGIS Specification, Document # 07-000,
http://www.opengeospatial.org/standards/sensorml/, viewed August
2007

[24] Open Geospatial Consortium Inc., OpenGIS Web Feature Service
Implementation Specification (WFS), OpenGIS Specification,
Document # 04-094, http://www.opengeospatial.org/standards/wfs,
viewed August 2007

[25] Open Geospatial Consortium Inc., OpenGIS Web Mapping Service
Implementation Specification (WMS), OpenGIS Specification,
Document # 03-109r1, http://www.opengeospatial.org/standards/wfs,
viewed August 2007

[26] OpenLayers, http://www.openlayers.org/
[27] PostGIS, http://postgis.refractions.net/
[28] Prentice, S. “From Computers to the Appliance Model: Is 2007 the

Tipping Point?”, Gartner Group White Paper, March 14 2007.
[29] Rackable, Inc., Concentro Modular Data Center,

http://www.rackable.com/solutions/Concentro_datasheet.pdf, viewed
August 2007

[30] Stonebraker, M., Rowe, L., and Hirohama, M.,. The Implementation of
Postgres. IEEE Transactions on Knowledge and Data Engineering,
2(1):125–142, 1990.

[31] Sun Microsystems, Inc., Project BlackBox,
http://www.sun.com/emrkt/blackbox/index.jsp, viewed August 2007

[32] Tivo, Inc, http://www.tivo.com/
[33] Real-time Water Quality Data for Shellfish Growers in the Pacific

Northwest, A pilot project between NANOOS and the National
Estuarine Research Reserve System, http://unsc-design.mindfly.net/

[34] Vorthman, R. G., Jr., Linn, J. W., III and Klein, F., Managing IOOS
Regional Association Development with Today’s Systems Engineering
Approach, MTS/IEEE OCEANS ’06 Conference in Boston, MA,
September 18-21, 2006.

[35] Sea-Bird Electronics, Inc., http://www.seabird.com/Index.htm
[36] SonTek, Inc., http://www.sontek.com/
[37] Teledyne RD Instruments, http://www.rdinstruments.com/
[38] Vorthman, R. G., Jr. and Holt, S. M., Towards a Rational Approach to

Standards for Integrated Ocean Observing Systems (IOOS)
Development

[39] W3C, Simple Object Access Protocol (SOAP), version 1.2, W3C
Recommendation, April 2007.

[40] XAP Server Appliance, http://xornet.net/html/appbenefits.html, viewed
August 2007

