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Abstract-We report on our progress towards an Ocean 
Appliance – envisioned as a complete, pre-built "server-in-a-
box" equipped with an ocean observation database, a forecast 
engine, a web server publishing an extensible web interface, a 
suite of web services establishing interoperability, and a library 
of data ingest and processing functions.  Collectively, these 
services allow efficient ingest, organization, analysis, and 
distribution of observations and model results with minimal on-
site configuration. By packaging the hardware as well as the 
software, the effort required to install and adapt the tools to the 
environment of the local data provider is minimized, 
streamlining the adoption of interoperability standards and 
simplifying environmental data management.  We report results 
from a pilot project using the appliance to support cruise 
operations and describe preparations for an upcoming multi-ship 
experiment involving real-time telemetry and coordinated, 
simultaneous analysis of forecasts and observations. 

I. INTRODUCTION 

The vision of the Integrated Ocean Observing System 
(IOOS) [20] as a "system of systems" that interoperate via 
standard protocols has been well-articulated in the literature [3] 
[14][17][20][26].  However, implementation and deployment 
of production systems has thus far been primarily a grassroots 
effort, with individual Regional Associations working to 
balance their customers’ immediate needs against long-term 
goals of national interoperability.  Observing that these 
providers do not necessarily have the resources to erect and 
maintain a standards-compliant data server, RA data managers 
frequently must (unilaterally) write software on their behalf.  
In this paper, we propose a model for managing this 
relationship between software providers and data providers in 
the oceanographic community by provisioning a complete 
package of hardware and software in order to reduce 
development, deployment, and maintenance costs. 

The software provided by the Regional Associations and 
other data aggregators is intended to “IOOS-enable” their 
constituent local data providers: data files produced by the 
instruments and data loggers are published in IOOS-compliant 
formats; e.g., Web Feature Service (WFS) [24], Web Mapping 
Service (WMS) [25], Sensor Observation Service (SOS) [3], 
Sensor Model Language (SensorML) [23], Simple Object 

Access Protocol (SOAP) [39].  The question of interest to us is 
this: Where and how should such software be deployed?   

A natural choice is to collect raw data in a central 
clearinghouse before processing, but the poor scalability of 
this centralized approach directly motivated the IOOS design 
of a system of systems. 

An alternative is to disseminate software to the data 
providers for installation on their local platforms.  We have 
directly encountered at least two problems with this latter 
approach.  First, the cost of supporting and maintaining 
software in multiple unfamiliar and uncontrolled environments 
is prohibitively high.  For example, must the authors ensure 
that their code runs properly on both Linux and Windows? 
Which distributions of Linux?  What versions of various 
libraries must the user have installed?  Second, local data 
providers may raise legitimate security concerns about 
running unfamiliar software on protected platforms, especially 
when the software could potentially interfere with data 
acquisition. 

To solve these problems, we carry the idea of software 
distribution one step further, and propose to distribute 
complete platforms known as appliances [4][17][40]. The 
appliance model of system provisioning is a delivery model in 
which hardware, software, and interfaces are built and bundled 
as a complete package that contains no “user-serviceable 
components.”  When failure occurs, the entire appliance is 
replaced as a unit with a new, pre-configured system.  This 
approach limits the uncertainty implied by installing software 
in heterogeneous environments, which in turn limits the cost 
of maintenance, either by the customers themselves or by the 
software suppliers in the form of technical support.  Further, 
system administrators are able to “quarantine” the appliance to 
assuage security concerns.  That is, local computers can read 
from and write to the appliance, but the appliance cannot read 
from or write to any network resources. 

Perhaps a familiar example of an appliance is a digital video 
recorder for your television [32].  These devices contain a 
conventional computer of minimal performance, a hard drive, 
a network interface, and some specialized peripherals such as 
an infrared for responding to commands from a hand-held 
remote.  In addition to the hardware, these devices provide 



specialized software – a streamlined operating system, a user 
interface, network communications for downloading television 
schedules, and little else.  The same capabilities are available 
in a laptop computer quipped with the proper software (and a 
remote), but packaging them as an appliance lowers the cost 
of technical support and reduces the installation effort for the 
consumer. 

Similar appliance models of service deployment are used by 
Rackable, Inc. [26] and Sun Microsystems, Inc. [30] and for 
managing massive data centers – thousands of cores are 
packaged into one ready-to-deploy shipping container and 
managed as an atomic unit. The observation is that this 
approach can alleviate configuration and administrative 
burdens normally associated with maintenance of distributed 
systems.  The appliance model is also projected to become the 
dominant model of computing resource provision, according 
to a report by the Gartner Group [28]. 

In this paper, we present the design and architecture of the 
Ocean Appliance, as well as the holistic properties of a multi-
appliance system.  The capabilities of the Ocean Appliance are 
currently modest but demonstrably satisfy our requirements 
for previous and planned experiments.  Each unit can 1) ingest 
data in a variety of common formats, 2) communicate and 
share data with other appliances, 3) serve observations and 
model results via relevant standards, and 4) generate and serve 
a variety of data products and visualizations.  The appliance 
provides a local abstraction to the national IOOS system of 
systems without requiring data providers to be individually 
responsible for implementing the evolving IOOS standards. 

We report on our experience using the appliance model to 
manage a cruise integrating real-time observations with the 
predictive capabilities of the CORIE forecasting system [1].  
Finally, we describe an upcoming experiment involving three 
coordinated vessels linked by Ocean Appliances. 

 

II. DESIGN PRINCIPLES  

The design of the Ocean Appliance is informed by the 
following guiding principles: 

Ubiquity of Information. Data ingested into one Ocean 
Appliance will be publicly available to other Ocean 
Appliances; the system is not intended for use as a private 
server. 

Ubiquity of Services. Products and services available on 
one Ocean Appliance can be transferred to another Ocean 
Appliance and executed without adaptation or reconfiguration. 

Extensibility. New products and services should be easy to 
develop and trivial to deploy.  For example, the multi-variable 
depth profile plot in Figure 1 was derived from a related single 
variable profile plot.  Both are parameterized by vessel, cruise, 
and cast ID, and published to the web as dynamic, interactive, 
reusable products. Further, both products can be transferred to 
other appliances in keeping with the Ubiquity of Services 
principle. 

Besides new products, we specifically encourage the reuse 
of existing products in new product ensembles.  We envision 
rapid development of task-specific interfaces.  For example, 
we developed the Cast Dashboard (Figure 2) by assembling a 
selection of existing products useful for decision support and 
CTD cast analysis.  We adopt a “factory” model of product 
generation: users do not define products themselves, but rather 
product specifications that can be used to generate many 
related products. 

The built-in extensibility lowers the barrier of entry and 
allows adopters to "pay as they go", expending incremental 
effort for incremental returns; this approach is increasingly 
recognized as a crucial criterion of success in large-scale data 
management projects [10]. 

Interactivity.  The appliance should supply data products 
for immediate consumption by end user in addition to 
programmatic interfaces.  That is, the appliance will consider 
the needs of end users and application developers equally.  For 
example, the cast profile plot in Figure 2 is a visualization and 
therefore intended for human eyes.  However, all observation 
products, including this one, are equipped with a simple 
“Download as ASCII” link (upper right) providing 
programmatic access to the exact dataset displayed in the plot. 

Low Cost.  The total cost of ownership of the appliance 
should be low enough to be installed and maintained by small 
observatories.  Specifically, we strive for minimal on-site 
configuration.  Once attached to power and network resources, 
data ingest can begin by attaching a serial cable, by copying 
files, or configuring a periodic download. 

Figure 1: A cast profile product displaying multiple variables 
simultaneously.  This product is dynamically generated, reusable 
in many contexts, and parameterized by cast number, vessel, and 

cruise.  It is encoded with one SQL statement and 25 lines of 
Matlab-style code, most of which was derived from an existing, 

simpler product.   



Security.  The appliance must not rely on access to user 
credentials on remote machines, shared file systems, or other 
secure resources for typical operation. 

Unobtrusiveness.  The appliance should have a small 
physical footprint and not require a monitor or keyboard to be 
connected for initial installation and ongoing operation.  
Further, it should not exhibit unusual power requirements or 
make excessive noise, allowing it to be installed anywhere. 

Robustness. The appliance should recover from faults and 
inadvertent power cycling without user intervention.  The 
appliance should be able to be deployed in harsh environments 
– e.g., on a research vessel or in an open-air base station.  We 
do not require that the appliances survive immersion or direct 
weather. 

Open Source. Our appliance design serves an exemplar and 
demonstration of the appliance model.  We encourage other 
groups to unilaterally experiment with and extend our design.  
Commensurately, the appliance has been developed using 
open source software exclusively. 

 
III. MANAGING DIVERSITY 

We consider diversity to be the primary challenge in 
managing oceanographic data.  Although the appliance model 
combats diversity by eliminating several potential sources 
(computing environments, hardware, configurations), the 
challenge is still formidable.  Consider the following sources:  

A. Diverse Variables  
We think of the Conductivity Temperature Depth (CTD) 

assemblages and the Acoustic Doppler Profiler (ADP) or 
equivalent .as the workhorses of observational physical 
oceanography.  Considering only these two devices, we 
already generate a broad set of requirements for a common 
“data model.”  The CTD reports a timeseries of point 
observations, while the ADP reports a timeseries of an array 
of 3-d vectors.  The temperature sensor inside a CTD is robust, 
reliable, and requires modest maintenance, while the 
conductivity sensor can become severely bio-fouled in 
estuarine environments, requiring estimates of quality for 
proper interpretation [1]. 

These physical observations are increasingly augmented 
with biological observations, including the concentration of 
dissolved oxygen, nitrate, chlorophyll, and other ecological 
variables to provide a more complete picture of the state of the 
ocean, its effect on ecology and, ultimately, its effect on 
human health.  These quantities are often linked to water 
samples, which in turn generate electrophoresis gels, DNA 
sequences, and annotations derived from genomic databases. 

B. Diverse Sensor Platforms  
Oceanographic sensors can be deployed on a variety of 

platforms, including fixed moorings for long-term coverage of 
strategic locations, moorings with vertical profiling 
capabilities, anchored buoys, passive drifters, vessels, 
undulating gliders, unmanned underwater vehicles (UUVs), 

aircraft, and satellites.  For a fixed mooring, the location of the 
measurements rarely or never changes, so re-transmitting 
latitude and longitude with each individual measurement is 
wasteful and potentially misleading (in relational terms, the 
functional dependency between the sensor identifier and the 
coordinates is not captured.)  However, other platforms 
generate observations following more dynamic trajectories in 
time and space; for example, vessels, (and prospectively, 
UUVs and gliders) may break pre-defined cruise plans to 
follow a strong salinity gradient to its source.  Observations 
may not even be points in space and time: Satellites and land-
based High Frequency Radar systems are capable of 
measuring wave height and surface velocity over a wide area 
simultaneously.  Measurements are in this case reported as a 
"grid" of data, a data structure that carries a challenging set of 
requirements in its own right [8].  The diversity of platforms 
leads to a diversity in requirements: even a "lowest common 
denominator" data model must thus be rather sophisticated. 

C. Diverse Applications 
The appropriate interface to ocean observation data, as with 

any other kind of data, should be driven by the requirements 
of the applications that will exercise it.  Here again, though, 
we find remarkable diversity.  Long-term, gapless, quality-
controlled coverage of a point or region is most useful for 
scientific applications to gain insight into low-frequency 
signals such as the effect of climate change on salmon 
habitability.  However, decision support applications such as 
search and rescue often require real-time access to any and all 

Figure 2: Dynamic product ensemble crafted for CTD cast analysis and 
ship-board decision support.  Upper left: Context information for the 

slected cruise providing current time, current location, most recent cast 
location.  Upper right: Map showing cruise trajectory against the bottom 

salinity as reported by the best available forecast.  This quadrant also 
displays a tide chart extracted from a NOAA website.  Bottom left: A 

table of observations reported by the selected CTD cast.  Bottom right: 
One of several real-time plots available based on cast observations. 



observations that might be useful (wind, surface velocity, 
temperature), even if their quality is not fully known. 

D. Diverse Data Providers 
Although some operators of oceanographic sensors have 

established budgets for building and maintaining sophisticated 
data management software, this situation is far from universal.  
Many sensor platforms are operated by small colleges or local 
government agencies with limited information technology 
resources.  A successful data management system should 
accommodate both extremes of sophistication: it should be 
easy to implement a minimally compliant programmatic 
interface (basic search, browse, and query), but it should be 
sufficiently extensible to accommodate advanced features 
when required. 

A poor example of a good standard for data access and 
exchange is a rich query language, perhaps based on 
Structured Query Language (SQL).  Local observatories may 
not have the resources to design and deploy a relational 
database system, nor can they be expected to parse, plan, 
optimize, and execute complex queries over their native files.  
Consumers of these observation streams would need to fall 
back on old habits; e.g., downloading and parsing ASCII files 
via FTP and custom scripts, respectively.   

 

IV. ARCHITECTURE 

There are five components to the appliance architecture: the 
basic platform stack (hardware, operating system, database, 
web server), ingest procedures, visualization capabilities, 
telemetry, and standards-compliant web services for data 
access.  

A. Platform Stack: Hardware, Operating System, 
Database, Web Server 

The chassis is shown in Figure 3.  The current appliance 
platform is based on commodity hardware. The Antec 
NSK1300 enclosure is rugged, compact and has sufficient 
cooling to support modern motherboards and peripherals. The 
footprint is modest: 12.5" x 7.5" x 7.5" high. Included in the 
enclosure is a 350 watt power supply with a 100mm variable 
speed fan. 

In keeping with the idea to use commercial hardware 
selected to work in shipboard environments this enclosure 
houses an Intel D102GGC2 motherboard. This motherboard is 
in the MicroATX form factor and includes onboard USB, 
SATA, IDE, and 10/100 Ethernet interfaces. We outfit the 
motherboard with 2 GB memory and a Dual Core 3.0 GHz 
Pentium CPU. Storage devices include 250 GB SATA disk 
drive and a CDROM or DVD for data loading.  The total cost 
of the hardware is approximately $550. 

For connectivity with instruments, we installed 2 dual port 
serial cards based on 16C550 compatible UARTs. This gives 
us 4 serial ports without requiring software support from the 
operating system.   The first port is configured to allow a user 
to login to the system in case of network failure (we cannot 
rely on a keyboard, mouse, or monitor available for 
attachment.)  The other three reserved for serial I/O devices. 

The operating system is Fedora Core 6, since it is widely 
supported by hardware vendors, it is licensed under GPL, and 
since the open source community provides timely updates 
consisting of both security patches and functional 
enhancements. 

Initially we deployed the x486-based “bricks” with 
OpenBSD. This OS required a license fee be paid and had 
limited community support.  Additionally, it came 
preconfigured with extensive security features, which limited 
our ability to respond in the field to changing mission 
requirements. 

The database system is implemented with PostgreSQL [30] 
with geographic extensions supplied by PostGIS [26].  The 
database design is two-tiered: There is an integrated schema 
capturing observations in a generic manner that we refer to as 
Ocean Observing System Database (OOSDB) [11].  
Observations are grouped into a single table regardless of their 
source.  Metadata providing provenance for the observations 
are organized in a similarly generic manner: each observation 
is linked to a mission and a sensor configuration.  The sensor 
configuration identifies the variable, the units, the rank (i.e., 
vector or scalar), and any calibration information needed for 
proper interpretation.  Unit conversion formulas can be 
explicitly recorded in the database, allowing transparent 
conversions to avoid queries that return nonsensical mixed 
units.  The mission identifies the platform, the experiment, the 
owning agency and other operational metadata.  An entity-
relationship diagram for the integrated schema appears in 
Figure 4. 

Figure 3: The external chassis of the Ocean Appliance. 



To address the diversity of variables, each stream of 
observations is decomposed into individual measurements, 
each recorded at a unique space and time.  Specifically, each 
observation is keyed on three attributes: time, location, 
and depth.  The time attribute has type TIMESTAMP 
WITH TIME ZONE as described in the SQL standard and as 
implemented in PostgreSQL.  This data type physically 
represents all times in UTC but allows ingest and transparent 
conversion of data from any time zone.  The location 
attribute has type GEOMETRY, a data type supplied by the 
PostGIS extensions to manage geographic coordinate 
transformations and map projections, allowing data to be 
properly projected onto maps in arbitrary coordinates.  The 
depth column is a user-defined type consisting of a numeric 
value and a datum.  We have not yet implemented transparent 
datum conversion functions for depths. 

The value attribute of the observation table is represented 
as an array of floating point numbers.  Despite apparent 
violation of normalization rules requiring that each attribute 
hold an atomic value, this feature has been a part of 
PostgreSQL for many years, and has proven its utility.  We 
use the array to model vectors so that velocity components can 
be stored (and therefore retrieved) together. 

In addition to the integrated schema, we have a handful of 
platform-specific schemas.  For example, we have a mooring 
schema tailored for simplified ingest and query of data 
acquired from fixed mooring.  These observations are stored 
in separate tables corresponding to each instrument type: ADP, 
CTD, and a handful of others.  Data loaded into a platform-
specific schema is automatically inserted into the integrated 
schema via the rule system of PostgreSQL.  Rules allow 
incoming queries to be rewritten on the fly to change their 
behavior. 

The platform-specific schemas exist for two reasons: First, 
users who only work with specific platform types find the 
integrated schema difficult to understand, and therefore, 
difficult to query when developing new data products.  Second, 
the platform-specific schemas provide a layer of indirection 
between user applications and the integrated schema, allowing 
us freedom to evolve the integrated schema as we see fit.  
These schemas therefore provide what is known as logical 
data independence, one of the hallmark benefits of the 
relational model. 

The web applications are served by the extremely popular 
open source Apache web server, and the site is powered by 
Drupal, an open source content management system oriented 
toward community development with a strong network of 
developers and a satisfied customer base.  Drupal allows users 
to dynamically create and edit their own pages, blogs, forums, 
and much more.  Content can be authored in HTML under 

various levels of restricted syntax, or in PHP itself, allowing 
rich applications to be “branded” and formatted automatically. 

For mapping applications, we rely extensively on 
MapServer [15], a reliable open source GIS workhorse that 
integrates tightly with PostGIS.  We have deployed more 
interactive, dynamic mapping applications using Google Maps 
[6] and OpenLayers [26], but find the reliability and 
consistency of MapServer are highly desirable for rapid 
development of new applications, a feature mandated by our 
design principle of extensibility.  

 

B. Observation Ingest 
The diversity in variables, sensors, and manufacturers 

makes it difficult to homogenize the streams from different 
platforms.  One solution developed by the Monterey Bay 
Aquarium and Research Institute is the PUCK [8], a 
programmable hardware device inserted between the sensor 
and the acquisition computer that fills in missing metadata 
(instrument information, time, location, etc.).  We consider the 
PUCK to be an excellent use of the appliance model, where 
capabilities are deployed in a self-contained hardware and 
software package for simplified installation.  Unfortunately, 
though, we do not always have access to the “final mile” in 
the telemetry pipeline – i.e., the connection between the sensor 
and the acquisition system.  We therefore must be able to 
properly interpret data from a variety of sources, including 
ASCII files in custom formats, raw NMEA feeds, and 
proprietary binary formats interpretable only by 
manufacturer’s software.   

Beginning over 10 years ago with the CORIE project, our 
group has generated a suite of tools for processing a variety of 
these heterogeneous data formats.  A first step in building the 
appliance was to gather these tools into a common library, 
refactoring, updating, and rewriting them as necessary.  Our 
ingest library is written in Python and includes handlers for 
CTD cast data, ADCP ping data, and NMEA streams from 
ship-board navigation systems. 

Much of our CTD cast data is acquired through technology 
from Seabird, Inc.  To interpret the output of a Seabird sensor, 
it is imperative to use the Seabird software directly, as the 
processing routines are attenuated to the specific details of the 
sensor itself.  Unfortunately, this software was not designed 
with external programmatic interfaces in mind.  We are forced 
to run their DOS-based programs on a virtual machine, and 
then analyze the ASCII output.  In addition to comprehension 
of CTD cast data from Sea-Bird Electronics, Inc.[35], we also 
have ingesters written for ADCP ping data from SonTek [36] 
and RDI [37] devices, as well as an interface to the excellent 
University of Hawaii Data Acquisition System (UHDAS) [11] 
for processing and quality control of ADCP ping data.   



Parsing, along with several other tasks, is the responsibility 
of the ingester.  The ingester is a streaming query engine 
allowing complex filtering pipelines to be composed from 
simpler functions.  There are two extensible Python classes 
that interoperate to manage parsing, logging, cleaning, 
metadata attachment, and database insertion.  A Scanner 
monitors a directory (recursively) for files that satisfy some 
condition.  Matching files have their contents extracted and 
their current size recorded.  When the files are modified, the 
Linux kernel sends a signal to the scanner indicating that 
another read is required.  The scanner reads the newly 
appended portion of the file and passes the block of unparsed 
data along to a pipeline of filters.  Each filter object performs 
a specific task on a single unit of data: we have filters that log 
messages, parse blocks of output, query the database, etc.  
Each filter operates in its own thread.  A chain of filters are 
linked by synchronized queues, so time-consuming or I/O 
intensive tasks can overlap with each other, improving overall 
performance. For example, the filter that processes the Seabird 
output is not particularly efficient due to its dependency on the 
original Seabird software.  When a new cast is being parsed by 
the seabird filter, the previous cast can simultaneously be 
loaded into the database; an I/O intensive operation. 

Processing pipelines consisting of chained scanners and 
filters have been developed for processing data streams from 
several instruments on several vessels.  Although there are a 
few cases where custom scanners were mandated by the non-
standard file formats encountered on the vessel, the pipelines 
are usually specific only to a manufacturer, suggesting that 
they can be re-used at other institutions.  We plan to release 
our ingest routines as an open-source library once upcoming 
tests are complete. 

C. Telemetry and Communications 
A core concept of our appliance design is agnosticism with 

respect to the underlying network protocols. Our initial 
network design was based on 900 MHz “serial modem” radios 
running SLIP for point to point connectivity. Routing rules 
needed to be configured precisely; mistakes require hands-on 
correction. 

With the advent of SWAP radios standards based routing 
became feasible.  Appliances connected to a SWAP radio 
obtained network connectivity as they joined a SWAP 
network. Making and breaking connection as dictated by ships 
movement. SWAP is based on the 802.11b wireless standard 
providing up to 11 mbps connectivity. Using a combination of 
antennas and power amplifiers we have seen connectivity up 
to 40 nautical miles offshore (Figure 4), though typical 
connectivity limits are 20 nautical miles offshore with 1 mbps 
throughput. 

SWAP radio systems are designed as firewalls and do not 
allow external connections into the SWAP radio systems. This 
limits our appliance to originating network connections. To 
address this problem, we have deployed a Cisco ASA5510 
Virtual Private Network appliance. When an appliance 
appears in range, the client establishes a secure tunnel to the 
shore-side network infrastructure. This tunnel is independent 
and isolated from the intervening network devices and is able 
to allow direct automated or manually initiated network access 
to the appliances. 

Transfer of application data across the network to remote 
appliances is achieved in one of three ways: via FTP of the 
raw files, through the web services, and through subscriptions 
to relational tables.  The subscription service is the primary 
mechanism for appliance-to-appliance transfer, for three 
reasons.  Applications are not intended to access the raw files; 
they are included for provenance purposes only.   The web 
services are not ideal for this purpose for two reasons.  First, 
although these services provide uniform programmatic access 
to all data sources, this uniformity can incur a loss of 
information for complex data types.  For example, a CTD cast 
can be decomposed into individual observations for 
compatibility with applications that only understand point 
observations.  However, the cast structure is important for 
cruise-oriented applications: biological samples are labeled 
with the "surface," "bottom," and "middle" of the cast during 
which they were collected.  Labeling the samples with specific 
observations does not provide a complete context.  Second, 
web services do not provide the transactional semantics of a 

Figure 4: A fragment of the integrated schema used by the Ocean Appliance to model observations originating from arbitrary sources. 



relational database, incurring a durability risk, where the data 
is acknowledged as received, but has not necessarily been 
committed to permanent storage.  For these reasons, we 
implement our primary telemetry mechanism using 
subscriptions to relational tables directly. 

A target appliance subscribes to a table on a host appliance 
using a Subscription Broker.  The Subscription Broker accepts 
two domain names representing two appliances and a table 
name as arguments.  The first argument is the “source” and the 
second argument is the “target.”  The Subscription Broker 
establishes connections to each database and provides several 
methods for manipulating the Subscriptions.  

In the current implementation, the Subscribe method creates 
a new Boolean column on the table (if necessary) named 
unsent_to_target, where target is the name of the target host.  
The new column can have three values: NULL, True, and 
False.  NULL indicates the record was inserted at a time when 
the subscription was not active. True indicates the record has 
not yet been uploaded to the host.  False indicates that the 
record has been successfully transmitted from source to target.  
In addition to creating the column, the Subscribe method sets 
the default to True, meaning that all subsequently inserted 
records will be marked for upload to the target host.  Existing 
records, however, do not have their values updated, for two 
reasons: First, updating every record of a large table takes 
significant time and can generates many holes that need to be 
vacuumed;  Second, the subscription semantics are more 
flexible this way, since only those tuples that are inserted 
while the subscription is active are marked for upload.  This 
design allows the Unsubscribe method to simply remove the 
default value from the column -- it does not need to touch any 
data.  The Unsubscribe method simply erases the default 
setting (at negligible cost), meaning that subsequently inserted 
records will default to NULL. 

The Subscription Broker also provides methods to drop the 
subscription columns.  However, since relational databases 
cannot efficiently drop columns, this method is rarely used.  
We plan to develop a different implementation of the 
Subscription Broker that uses triggers on source tables rather 
than flag columns.  The current approach, however, is more 
amenable to schema changes, which are still rather frequent 
during prototyping and initial testing. 

The Subscription Broker is instructed to retrieve and 
transmit unsent tuples by the Transfer method. Since 
individual tuples rather than complex objects are transmitted, 
there is a possibility that tuples may be transmitted before 
other tuples on which they depend, incurring a foreign key 
violation in the target database.  If foreign keys are violated 
during upload, then an exception is raised (thanks to the 
integrity constraints enforced by the relational database) and 
the tuples are not marked as sent.  It is important to therefore 
transfer table content in manner that respects the topology of 
the schema -- parents should be uploaded before children.  A 
more sophisticated broker is not difficult to implement: for 
each tuple to be uploaded, make sure that any other tuples 

referenced via foreign keys are uploaded first.  We are 
currently exploring this design. 

Transmission in unreliable network conditions exposes 
starvation and fairness issues: when serving subscriptions for 
multiple tables that are all receiving constant updates, all 
tables must eventually have their tuples transmitted, and at 
more or less the same rate.  The Subscription Broker therefore 
adopts a simple round-robin scheme, where a configurable 
number of tuples are transmitted for one table before moving 
onto the next. 

The subscription service is agnostic with respect to "push" 
or "pull" semantics, and can therefore be run on either host.  In 
our testbed application, we run the service on the vessels, 
since each vessel can see the server without relying on the 
VPN. 

D. Products and Visualization 
We have recently augmented an extensive suite of 

“standard” products with dynamic, interactive products, 
product ensembles, and full-featured applications.  For the 
Pilot Experiment in April 2007, we tested the Cruise Mapper, 
a MapServer application integrating model results from a 
variety of forecasts with nautical charts, bathymetry charts, 
and dynamic cruise information.   

Observing that the number of products we are capable of 
providing to users can be overwhelming we have recently 
begun to focus on task-specific interfaces that arrange 
specialized products to provide context and information for 
scientists to efficiently complete specific tasks.  One such 
interface is the Cast Dashboard for real-time vessel decision 
support. 

Figure 5: Cruise path for the April 2007 cruise of the Center for Coastal 
Margin Observation and Prediction.  The higlighted portions indicate 
connectivity with the shore.  (a) 20km theoretical limit radio range. 

Oregon 

Washington (a) 



The Cast Dashboard (Figure 2) is a single-screen interface 
bringing together a small set of task-specific products and 
tools for taking, reviewing and planning CTD casts. Most of 
these products and tools either existed previously or were 
easily derived from existing ones. The screen is divided into 
four quadrants: The top left displays context information about 
the current time, vessel and cruise, and the results of the last 
cast. The top right can display a small map showing the cruise 
path, location of casts, current location, and forecasted bottom 
salinity. Clicking on this map redirects the user to the full 
controls of the Cruise Mapper.  A short menu can change the 
top right to a tide chart extracted from a NOAA web site, or a 
animation showing forecasted bottom salinity over 72 hours. 
The bottom left can display tables of time and location of all 
casts or CTD data of one selected cast, or a form for entering 
data about water samples and other non-automated cast 
metadata. Finally, the bottom right can display one of several 
products from the “product factory,” including: a single- or 
multi-variable individual cast profile, a cast-model 
comparison profile, a timeseries of cast profiles colored by a 
selected variable, and a salinity/temperature mixing plot for a 
selected cast. 

Contrast the task-specific Dashboard with the alternative 
model of a comprehensive directory of all available products; 
under the constrained conditions of a research cruise, users 
cannot waste time browsing for a particular product.  

The Cast Dashboard was first deployed on a cruise in July 
2007 and was received with enthusiasm. 

 

E. Interoperability via Web Services 
Ingested observational data is automatically published via 

web services.  Specifically, we have been working closely 
with the OOSTethys project [3] to develop servers and clients 

for the Sensor Observation Service [23]. The SOS standard 
specifies a core API of the following three methods:  

• GetCapabilities returns information about the data 
inventory and supported access methods. This method 
is used in support of discovery services. 

• DescribeSensor returns metadata of varying detail 
about a given sensor.  The description format follows a 
separate standard that is rapidly gaining momentum: 
SensorML [23]. 

• GetObservation is the basic query primitive for 
returning the latest value of a given variable for a given 
sensor platform.  Additional arguments can be supplied 
to filter results by space and time. 

As part of our collaboration on OOSTethys, we have 
developed PySOS, a pure-Python SOS server for publishing 
data from an arbitrary relational database.  This service is not 
dependent on the OOSDB schema and can be configured to 
work with any relational schema by writing just four SQL 
queries.  The system has been released as open source on the 
OOSTethys site [11]. 

The SOS service hosted at the Center for Coastal Margin 
Observation and Prediction (CMOP) is consumed by several 
projects, including a real-time water quality pilot project [33] 
between the National Association of Networked Ocean 
Observing Systems (NANOOS) [18] and the National 
Estuarine Research Reserve System (NERRS) [19].   

In contrast to point observations, model results of non-
trivial scope cannot be effectively managed in a relational 
database due to their size and use of mesh-oriented data 
structures and algorithms [8].  We therefore use two strategies 
to provide programmatic interfaces to our model results.  First, 
we have defined a set of web services that emulate real-world 
observational platforms, but provide access to the “virtual 
ocean” delivered by the model.  Specifically, we provide a 
web service that returns a depth profile for an arbitrary 
variable at arbitrary lat/lon coordinates representing a virtual 
CTD cast over the side of a virtual vessel.  Using this basic 
web service, we derive additional services emulating the flow-
through sensor packages on our research vessels, fixed 
moorings including those with vertical mobility, and 
additional platforms such as UUVs and autonomous gliders.  
Second, we provide a flexible language for expressing more 
complex 2-d and 3-d products and serve them over WMS [25].  
Using the gridfield language [9], we can efficiently generate 
stratification products (surface salinity - bottom salinity), 
upwelling metrics (surface temperature – bottom 
temperature)/bottom temperature, aggregates over depth, 
virtual moorings, and emulate fixed stations. 

V. PILOT EXPERIMENT 

In April 2007, CMOP conducted its inaugural cruise with 
the R/V Wecoma.  Cruise goals were to retrieve and deploy 
shelf buoys and to collect water samples from CTD casts 
along five coastal transects to investigate microbial population 
diversity across salinity gradients generated by the Columbia 

Figure 6: A data product written in 13 lines of code using the gridfield 
algebra.  Right pane: Plume of fresh water at the mouth of the Columbia 

River. Left pane: areas of maximum salinity gradient illustrating the 
plume front. 



River plume.  This cruise also served as a pilot test of the 
Ocean Appliance. 

Figure 5 displays a map of the cruise path annotated with (a) 
the theoretical limit of the SWAP radio network, and (b) the 
locations of successful connectivity between ship and shore.  
The fact that connectivity was achieved outside the theoretical 
maximum range of the radio technology is attributable to 
cloud cover providing a reflective surface.  Gaps in 
connectivity within the 20 km limit are attributable to areas of 
unreliable SWAP coverage. 

The intermittent nature of ship-to-shore communications 
requires design consideration at the application level.  
Specifically, as model results are pushed to the vessel and 
observations are pushed to the shore, limited bandwidth must 
be allocated carefully.  These priority decisions are non-trivial: 
For example, the data stream from the navigation computer is 
crucial, but can be aggressively down sampled from its source 
rate of one observation every three seconds.  However, 
observations from the CTD device must be packaged as a unit 
to guarantee that important features of the profile (e.g., sea 
state at sample depths) are preserved for collaborative analysis. 

The communication of model results admits more complex 
strategies.  The results themselves are large: 5 GB for one 
simulation day of five primary physical variables (salinity, 
temperature, horizontal velocity, vertical velocity, elevation).  
Apart from bandwidth considerations, having these 
unprocessed results available on the ship is ideal, as the 
complete suite of analysis tools are then applicable.  However, 
the bandwidth of the SWAP network can at times narrow to 
15-20 kb/sec, requiring more time to transmit the results than 
the period being simulated!   

Several alternatives exist:  First, the relevant products from 
the standard product inventory may be sent to the vessel rather 
than the raw output.  Isoline animations of the type shown in 
Figure 6 are useful for inspecting the gross behavior of 
features such as the Columbia River plume; these products 
represent several days of simulated time and are 652kB each.  
Model-data comparisons are necessary to assess model skill; 
these products depend on successful upload of ship 
observations.  Distributing products only precludes custom 
analysis: users and administrators must predict which products 
will be most useful.   

The spatial and temporal regions of interest are somewhat 
easier to predict than the nature of the scientific questions that 
might arise, so a second communication strategy is to transmit 
only those regions of the model’s domain that are relevant to 
the cruise.  This approach is conceptually simple, but requires 
a sophisticated infrastructure.  Specifically, every software 
artifact that handles the model results must be designed to 
transparently tolerate arbitrary subsets of the full results 
regardless of size or shape. 

Our progress with this approach has been accelerated by the 
gridfield algebra [8], a language for manipulating simulation 
results as first class citizens, without regard to their internal 
structure.  Using gridfields as a subsystem, model results can 

be efficiently broken up on the server, selectively and 
incrementally delivered to the vessel, and then reassembled as 
needed.  The system provides a framework in which to 
explore and optimize spatio-temporal distribution and 
prioritization policies.  For example, the region around the 
vessel’s planned track can be pre-fetched using the gridfield 
system, as can regions of scientific focus, such as the 
Columbia River plume and hypoxic zones.  Beyond data 
delivery optimization, gridfields provide an expressive 
language for rapidly developing complex data products.  The 
product in Figure 6 is expressed in 13 lines of code.  The right 
pane displays salinity in the region of the plume (the mouth of 
the Columbia River is just visible at center-right).  The left 
pane shows isolines of salinity gradient subjected to a 
threshold.  The regions of high gradient clearly illustrate the 
plume front. 

A third strategy for exchanging data with the vessel, and the 
one we adopt in our current pilot experiments, is to pre-load 
an extended (7-day) forecast on each vessel, then update them 
incrementally during port calls.  This approach is clearly the 
most primitive, but it ensures that a viable model is available 
for all regions and all times. 

Beyond the upload of observations and download of 
forecasts, the April Cruise allowed us to assay our initial 
analysis interfaces.  The Cruise Mapper was exercised in a 
dynamic cruise planning decision.  Ahead of schedule, an 
extra cast near the plume was considered as a course change.  
However, the forecasts displayed in the Cruise Mapper 
indicated that the plume had turned northward and was 
unlikely to be caught in the allotted time.  The on-board 
availability of model results visible through the Cruise Mapper 
saved significant time and effort. 

 

VI. MULTI-SHIP EXPERIMENT 

We envision the Ocean Appliance to support cruises of 
evolving complexity, including, starting in 2008, CMOP 
cruises requiring the coordination of multiple vessels, an 
airplane, two gliders, an UUV, an observation network with 
adjustable vertical profiling capabilities, and near-real time 
model forecasts.   

Towards this goal, the next test will be a coordinated three-
vessel cruise, to be conducted in August 2007. This will be the 
first CMOP river-to-ocean cruise, and will include in-context 
characterization of microbial communities and activity in high 
gradient regions such as estuarine turbidity maxima, plume 
fronts, coastal eddies and upwelling regions. The three vessels 
will be outfitted with an Ocean Appliance, each differing only 
in the “final mile” of the data acquisition procedures.   

Informed by the success of the ExView system tested 
during the 2006 Shallow Water Survey [14], we plan to 
provide near-real time broadcast of a range of observations 
(from vessels, the CORIE observation network, and airborne 
sensors) and of model simulations to all vessels using 
appliance-to-appliance communications.  The ExView system 



itself was not re-deployable in our environment, as it is tightly 
coupled to the specific platforms and equipment in use at 
Woods Hole Oceanographic Institute.  Our goal is to not only 
satisfy the science goals of the cruise, but to test a reusable, re-
deployable system for data ingest and management. 
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