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A cross-scale model for 3D baroclinic circulation in
estuary–plume–shelf systems: I. Formulation and skill

assessment

Yinglong Zhang, António M. Baptista�, Edward P. Myers, III1

OGI School of Science & Engineering, Oregon Health & Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA
O

ECTED P
RAbstract

Challenges posed by the Columbia River estuary–plume–shelf system have led to the development of ELCIRC, a

model designed for the effective simulation of 3D baroclinic circulation across river-to-ocean scales. ELCIRC uses a

finite-volume/finite-difference Eulerian–Lagrangian algorithm to solve the shallow water equations, written to

realistically address a wide range of physical processes and of atmospheric, ocean and river forcings. The numerical

algorithm is volume conservative, stable and computationally efficient, and it naturally incorporates wetting and drying

of tidal flats. ELCIRC has been subject to systematic benchmarking, and applied to the description of the Columbia

River circulation. This paper motivates and describes the formulation, presents and critically analyzes the results of

selected benchmarks, and introduces ELCIRC as an open-source code available for community use and enhancement.

A companion paper describes the application of ELCIRC to the Columbia River.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Mathematical modeling; Ocean, coastal and estuarine circulation; Eulerian lagrangian methods; Finite volumes; Finite

differences; Semi-implicit methods
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1. Introduction

Tightly coupled estuary–plume–shelf systems
pose cross-scale modeling challenges that are still
insufficiently addressed by the communities devel-
UN
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ional Ocean Service, NOAA, Office of Coastal

pring, MD 20910-3282, USA.
oping open-source marine models such as POM
(Blumberg and Mellor, 1987; Oey and Mellor,
1993), ROMS (Haidvogel et al., 2000), SEOM
(Iskandarani et al., 2003) and QUODDY (Lynch
et al., 1996). To illustrate these challenges, we
consider briefly the Columbia River, a complex
system that requires extensive, systematic model-
ing due to its central role in the economy and way
of life of the Pacific Northwest of the United
States.
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With the second largest annual river discharge
in the United States, the Columbia River is subject
to highly variable forcings from river, ocean and
atmosphere, and is characterized by a rich
diversity of circulation regimes and by strong
physical gradients. The freshwater plume is a
major regional oceanographic feature, controlled
at various scales by coastal winds, freshwater
discharges, tides and bathymetry. The estuary is
shallow, except for two deep channels—the longest
of which acts as the major conduit for freshwater
discharge. Extensive wetting and drying (e.g., Fig.
1a, b) occurs both in the estuary main stem and in
ecologically important lateral bays. In the chan-
nels, velocities may reach 5m/s in ebb, and tidal
ellipses are topographically constrained. Hydraulic
residence times are short, and residual velocities
UNCORREC

(c)

(a)

Fig. 1. Among the many modeling challenges posed by the Columbia

(a. SAR image; b. ELCIRC salinity simulation, with white areas sh

estuarine and plume processes and features, including fronts (c. SAR

10,000 particles after 48 h of dispersal). SAR images are r Canadia

Comprehensive Large Array-data Stewardship System (CLASS).
OF

are strong and highly variable in space and time.
Salinity intrusion is compressed, reaching at most
about 48 km upstream of the mouth, while tidal
influence is felt all the way to the first dam, 232 km
upstream. Strong, largely salinity-driven stratifica-
tion fosters complex and highly variable baroclinic
circulation patterns, and creates the opportunity
for estuarine turbidity maxima to develop in both
channels of the main stem.
The dynamics of the plume and the estuary are

inextricably linked, through active tidal exchange
and strong frontal structures extending across the
mouth (Fig. 1c, d). Shelf winds dramatically affect
the low-frequency water levels in the estuary.
Through both upwelling and control of plume
orientation and attachment to the coast, shelf
TED P
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River are the extensive wetting and drying of estuarine tidal flats

owing drying of tidal flats) and the tight interconnectivity of

image; d. ELCIRC simulations showing fronts through loci of

n Space Agency 2002, and are shown courtesy of the NOAA
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winds also impact estuarine budgets of heat and
salt.

Systematic, detailed numerical modeling of the
Columbia River is being conducted in the context
of CORIE, a multi-purpose coastal margin ob-
servatory (Baptista et al., 1998; Baptista et al.,
1999; Baptista, 2002) that produces both daily
forecasts and multi-year hindcast simulations. We
recognized early on that setting a boundary
condition at or near the mouth of the Columbia
River would be a daunting challenge (e.g., Fig. 1c,
d), with unlikely odds of success—and thus we
made the decision to model the estuary and plume
(thus, the shelf) as a whole. This was also most
consistent with the scientific and management
issues that the CORIE modeling system is
designed to address.

The broad context of the CORIE goals, the
complexity of the Columbia River, and the
decision to address the Columbia River dynamics
across estuarine–plume–shelf scales, combine to
create a set of challenging modeling requirements,
including:
73
�
75
Covering geographically extensive domains (riv-
er-to-ocean scales), while retaining high spatial
resolutions in multiple localized regions.
�

77
CCovering multiple decades, at sub-hour resolu-

tion.

�

79

81
REEnabling state-of-the-art 3D representations of
riverine, estuarine and ocean circulation pro-
cesses, including advection-dominated flows,
sharp density gradients, and wetting and drying.
�

83

85

87

89

91

93

95
2Baroclinic terms and Mellor and Yamada (1982) turbulence

closure equations have recently been included in UnTRIM (V.

Casulli, private communication).
UNCORAchieving sufficient computational efficiency to
enable both operational forecasting and crea-
tion of long-term (multi-year) simulation data-
bases, without sacrificing process representation
or space–time resolution.

Early attempts by our group to use established
models such as ADCIRC (Luettich et al., 1991),
POM and QUODDY did not meet the above
requirements (unpublished work); reasons varied,
but commonly included cost inefficiencies due to
time step constraints associated with the treatment
of advection. Circa (1999), an extensive review of
the existing literature, revealed the existence of an
unstructured-grid code (UnTrim, Casulli and
TED P
ROOF

Zanolli, 1998) the numerical strategy of which—
and, in particular, the treatment of advection—
appeared ideally suited for the task. However,
neither UnTRIM nor its earlier, structured-grid
version (TRIM, Casulli and Cheng, 1992) were
available as free, open source software. UnTRIM
also did not include a baroclinic component2 and
both UnTRIM and TRIM were overly simplistic
relative to physical processes such as turbulence
(e.g., direct specification of vertical mixing2) and
air–water exchanges (e.g., no heat balance terms),
which are essential in the Columbia River and in
many other marine modeling applications.
We have since undertaken the development of

ELCIRC, inspired by the UnTRIM formulation,
but independently coded and with expanded
process representation. Like UnTRIM, ELCIRC
solves the shallow water equations using a semi-
implicit Eulerian–Lagrangian finite volume/finite
difference method reliant on horizontally unstruc-
tured grids and unstretched z-coordinates. How-
ever, ELCIRC differs algorithmically from
UnTRIM in the treatment of tangential velocities
and of transport quantities (salinity and tempera-
ture). In addition, ELCIRC allows for the use of
state-of-the-art turbulence closure schemes (Um-
lauf and Burchard, 2003), includes terms for the
tidal potential and atmospheric pressure gradients,
and provides a detailed description of air–water
exchanges (see Appendix A).
ELCIRC has been subject to extensive bench-

marking and has been applied to the description of
important Columbia River features and processes.
A limited number of researchers have used
ELCIRC in other applications (Robinson et al.,
2004; Myers and Aikman, 2003; and Pinto et al.,
2003). Based on the benchmarks and pilot
applications, our current assessment is that EL-
CIRC is a functional code, generally well adjusted
to the modeling requirements that we set forth,
and with contrasting characteristics relative to
existing coastal circulation community models,
especially in the treatment of advection and
wetting-and-drying, and in the order of conver-
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gence of the numerical solution. As a natural next
step, ELCIRC is being released as an open-source
code (CCALMR, 2003), with the expectation that
it will anchor a modeling framework that will
evolve in robustness and disciplinary scope.

The present paper constitutes a comprehensive
reference for version 5.01 of ELCIRC (henceforth,
ELCIRC_v5.01), describing its formulation and
critically presenting the solution of several syn-
thetic but demanding benchmarks. A companion
paper (Baptista et al., 2004) will describe in detail
aspects of the simulation of the 3D baroclinic
circulation in the Columbia River estuary and
plume—by far the most extensive application of
ELCIRC to date.

After this Introduction, Section 2 presents the
physical and mathematical formulation of the
model, with the air–water exchange formulation
summarized in Appendix A. The numerical
strategy is detailed in Section 3, and Section 4
describes the performance of ELCIRC against a
range of synthetic benchmark tests. Finally,
Section 5 presents a road map for future develop-
ments.
73

75

77

79

81

83

85

87

89

91

93

95
UNCORREC2. Physical formulation

2.1. Governing equations

We solve for the free surface elevation, 3D water
velocity, salinity and temperature, using a set of six
hydrostatic equations based on the Boussinesq
approximation, which represent mass conservation
(in both 3D and depth-integrated forms), momen-
tum conservation, and conservation of salt and
heat:

@u

@x
þ

@v

@y
þ

@w

@z
¼ 0; (1)

@Z
@t

þ
@

@x

Z HRþZ

HR�h

udz þ
@

@y

Z HRþZ

HR�h

vdz ¼ 0; (2)

Du

Dt
¼ fv �

@

@x
gðZ� aĉÞ þ

Pa

r0

� �
�

g

r0

Z HRþZ

z

@r
@x

d z

þ
@

@z
Kmv

@u

@z

� �
þ Fmx; ð3Þ
TED P
ROOF

Dv

Dt
¼ � fu �

@

@y
gðZ� aĉÞ þ

Pa

r0

� �
�

g

r0

Z HRþZ

z

@r
@y

d z

þ
@

@z
Kmv

@v

@z

� �
þ Fmy; ð4Þ

DS

Dt
¼

@

@z
Ksv

@S

@z

� �
þ F s; (5)

DT

Dt
¼

@

@z
Khv

@T

@z

� �
þ

_Q

r0Cp

þ Fh; (6)

where

(x, y) horizontal Cartesian coordinates, (m)
ðf; lÞ latitude and longitude
z vertical coordinate, positive upward, (m)
t time, (s)
HR z-coordinate at reference level (geoid or

mean sea level (MSL))
Zðx; y; tÞ free-surface elevation, (m)
hðx; yÞ bathymetric depth, (m)
~uð~x; tÞ water velocity at ~x=(x,y,z), with Carte-

sian components (u,v,w), (m s�1)
f Coriolis factor, (s�1) (Section 2.5)
g acceleration of gravity, in (m s�2)
ĉðf; lÞ tidal potential, (m) (Section 2.5)
a effective Earth elasticity factor (E0.69;

Foreman et al., 1993)
rð~x; tÞ water density; by default, reference value

r0 is set as 1025 kgm�3

Paðx; y; tÞ atmospheric pressure at the free surface,
(Nm�2)

S, T salinity and temperature of the water
(practical salinity units (psu), 1C)

Kmv vertical eddy viscosity, (m2 s�1)
Ksv, Khv vertical eddy diffusivity, for salt and heat,

(m2 s�1)
Fmx;F my;F s;F h horizontal diffusion for momen-

tum and transport equations
_Qðf; l; z; tÞ rate of absorption of solar radiation

(Wm�2)
Cp specific heat of water (J kg�1K�1)

In the remainder of this text and in most
ELCIRC simulations, we neglect horizontal diffu-
sion in the momentum and transport equations.
Horizontal diffusion tends to be a secondary
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process, and the solution method introduces
numerical horizontal diffusion that may exceed
its physical counterpart (see further discussion in
Sections 3.4 and 4.1.3). The reader is referred to
Casulli and Zanolli (1998) and Casulli and Cheng
(1992) for a treatment of horizontal diffusion
terms in the framework of Eulerian–Lagrangian
finite volume models.

The differential system for the six primary
variables ðZ; u; v;w;T ;SÞ; Eqs. (1)–(6), is closed
with the equation of state (density as a function of
salinity and temperature; Section 2.2), the defini-
tion of the tidal potential and Coriolis factor
(Section 2.5), parameterizations for vertical mixing
(Section 2.4), and appropriate initial and bound-
ary conditions. Initial conditions require problem-
dependent specification of pre-simulation fields of
all primary variables and of any turbulence
parameters required by the vertical mixing para-
meterization. We will discuss the vertical boundary
conditions in Section 2.3. Lateral boundary con-
ditions may be chosen from a range of Dirichlet,
Neumann and open boundary conditions.
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UNCORREC
2.2. Equation of state

The density of sea water is defined as a function
of salinity, temperature and hydrostatic pressure,
using the International Equation of State of Sea
Water (ISE80) standard described in Millero and
Poisson (1981):

rðS;T ; pÞ ¼
rðS;T ; 0Þ

1� 105p=KðS;T ; pÞ
� � ; (7)

where rðS;T ; 0Þ (kg/m�3) is the density at one
standard atmosphere, and KðS;T ; pÞ is the secant
bulk modulus. Polynomial expressions for both
rðS;T ; 0Þ and KðS;T ; pÞ are integral to the ISE80
standard, and will not be repeated here. We
compute the water pressure in bars, consistent
with the hydrostatic approximation:

p ¼ 10�5g

Z HRþZ

z

rðS;T ; pÞdz: (8)
TED P
ROOF

2.3. Vertical boundary conditions for primary

equations

2.3.1. Horizontal momentum: surface boundary

At the sea surface, we enforce the balance
between the internal Reynolds stress and the
applied shear stress, i.e.

r0Kmv

@u

@z
;
@v

@z

� �
¼ ðtWx; tWyÞ at z ¼ HR þ Z:

(9)

ELCIRC allows for two different approaches to
the parameterization of spatially and temporally
variable surface shear stresses. One approach
consists of the use of a bulk aerodynamic
algorithm developed by Zeng et al. (1998) to
account for ocean surface fluxes (momentum, heat
and salt) under various conditions of stability of
the atmosphere. This approach is summarized in
Appendix A, and is recommended when ELCIRC
is used in conjunction with (or, more commonly,
forced by outputs from) an atmospheric model.
Short of detailed information on atmospheric

stability, surface stresses can alternatively be
evaluated as

ðtWx; tWyÞ ¼ raCDsj ~W jðW x;W yÞ (10)

where, ra is the air density (kgm�3), CDs the wind
drag coefficient (�), ~W ðx; y; tÞ the wind velocity at
10m above the sea surface, with magnitude |W|
and components Wx and Wy (ms�1)
and where:

CDs ¼ 10�3ðAW1 þ AW2j ~W jÞ

if W lowpj ~W jpW high ð11Þ

with CDs held constant (at either Wlow or Whigh

values) outside the range, as appropriate. For
moderately strong winds, this formula allows the
efficiency of the air–ocean transfer of momentum
to increase with increasing wind speed. Many
alternative literature values have been proposed
for AW1, AW2 and associated ranges of validity
(e.g., see review in Pond and Pickard (1998), pp.
135–137). In the absence of data to the contrary,
ELCIRC assumes, as the starting point for site-
specific calibration, that
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AW1 ¼ 0:61;

AW2 ¼ 0:063;

W low ¼ 6;

W high ¼ 50: ð12Þ

2.3.2. Horizontal momentum: bottom boundary

As customary, we enforce at the sea bottom the
balance between the internal Reynolds stress and
the bottom frictional stress, i.e.

r0Kmv

@u

@z
;
@v

@z

� �
b

¼ ðtbx; tbyÞ; at z ¼ HR � h;

(13)

where the bottom stress is defined as

ðtbx; tbyÞ ¼ r0CDb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

b þ v2b

q
ðub; vbÞ: (14)

The bottom drag coefficient CDb is typically
variable in space, and might also vary at various
temporal scales (e.g., through current–wave inter-
actions or long-term changes in bottom texture).
Site-specific calibration is often required. In
ELCIRC, the bottom drag coefficient can be
externally specified, or can be evaluated internally
by matching velocities (ub,vb) at or near the edge of
the bottom boundary layer:

CDb ¼ max
1

k
ln

db

z0

� ��2

;CDbmin

( )
; (15)

where k ¼ 0:4 is the von Karman’s constant, z0 the
local bottom roughness, and db half the thickness
of the bottom computational cell. The parameter
z0 depends on the local bottom roughness, and is
typically of the order of 1 cm (Blumberg and
Mellor, 1987). A coarse bottom discretization may
greatly overestimate db relative to the true
boundary layer thickness and, without the moder-
ating effect of CDbmin, could grossly underestimate
CDb. Values of CDbmin of 0.0075 and 0.0025 have
been recommended for continental shelves (Lynch
et al., 1996) and deep ocean (Blumberg and
Mellor, 1987), respectively, corresponding to an
‘‘effective db’’ of approximately 1 and 30m.
Ultimately, the choice is site-specific and spatially
variable.
OF

2.3.3. Heat and salt conservation

In most cases, there are no salt fluxes across the
sea surface and bottom, neither is there any heat
flux at the bottom. However, heat exchanges
through the air–sea interface are important in
most coastal and ocean systems. While solar
radiation is treated directly in Eq. (6), all other
heat exchanges must be accounted through the
surface boundary condition. Specifically:

Khv

@T

@z
¼

H�
tot #

r0Cp

; at z ¼ HR þ Z; (16)

where H�
tot # is the net downwards heat flux at the

air–water interface, exclusive of solar radiation
(see Appendix A).
TED P
RO2.4. Parameterization of turbulent vertical mixing

Recognizing that the parameterization of turbu-
lent vertical mixing remains an open question in
coastal modeling, we allow for multiple choices
among many approaches of widely varying com-
plexity that have been proposed in the literature.
Currently coded are a zero-equation model (based
on Pacanowski and Philander, 1981) and multiple
two-and-a-half equation models (Umlauf and
Burchard (2003) and Mellor and Yamada (1982),
as modified by Galperin et al. (1988)). In all
approaches, we assume similarity of the vertical
mixing for heat and salt, i.e.Ksv ffi Khv:
2.4.1. Zero-equation models

Several zero-equation parameterizations at-
tempt to account for the effect of varying
stratification on the vertical mixing. Vaz and
Simpson (1994) compared three such schemes
(Munk and Anderson, 1948; Pacanowski and
Philander, 1981; Lehfeldt and Bloss, 1988) among
each other and against simpler (constant and step-
function viscosities) and more complex approaches
(one- and two-equation schemes, from Mellor and
Yamada, 1982). The comparison, set up in a
context of transient estuarine stratification pro-
blems and based on qualitative and quantitative
tests, found the scheme of Pacanowski and
Philander (1981) to perform the best among
zero-equation closures.
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The scheme assumes that the local eddy
viscosity and diffusivity, Kmv and Khv, only depend
on the gradient Richardson number, Ri. Specifi-
cally,

Kmv ¼
n0

ð1þ 5RiÞ2
þ nb; (17)

Khv ¼
Kmv

1þ 5Ri
þ Kb; (18)

where Kmv and Khv approach a turbulent upper
value,n0; in the limit of no density stratification
and finite vertical shear (i.e., Ri ! 0), and
approach molecular background values,nband Kb,
in the limit of large density stratification (i.e.,
Ri ! 1). While Pacanowski and Philander (1981)
recommended n0 ¼ 5� 10�3; nb ¼ 10�4 and Kb ¼

10�5 m2 s�1; ELCIRC gives the user the choice on
these values. In the above equations, the Richard-
son number is defined as

Ri ¼
N2

@u=@z
� 	2

þ @v=@z
� 	2 ; (19)

where the Brunt–Vassala frequency, N2; can be
negative:

N2 ¼
g

r0

@r
@z

: (20)

2.4.2. Two-and-a-half equation models

We have implemented in ELCIRC both the
traditional 2.5 closure model of Mellor and
Yamada (1982) as modified by Galperin et al.
(1988) (hereafter, MY25), and the generic length
scale (GLS) closure model proposed by Umlauf
and Burchard (2003). GLS includes, as particular
realizations, a variety of two-and-a-half equation
UNC
Table 1

Constants for various GLS closure models

c p m n sck sc

k2� �e 3 1.5 �1 1.0 1.3

k2k‘ k‘ 0 1 1 1.96 1.96

k2o �
ffiffiffi
k

p
=‘ �1 0.5 �1 2.0 2.0

UB � k=‘2=3 2 1 �0.67 0.8 1.07

aValues reflect the choice of stability functions from Kantha and C
TED P
ROOF

models, both new (e.g., GLS as optimized by
Umlauf and Burchard (2003), henceforth UB) and
traditional—such as k2� (kinetic energy and
energy dissipation, Rodi (1984)) and k2o (kinetic
energy and frequency of dissipation, Wilcox,
1998). Although the GLS framework does not
strictly include MY25, it allows for an analog
(k � k‘; kinetic energy and kinetic energy times
length scale).
Central to the GLS framework are two equa-

tions that govern the transport, production and
dissipation of the turbulent kinetic energy (k) and
of a generic length-scale variable (c):

Dk

Dt
¼

@

@z
nck

@k

@z

� �
þ KmvM2 þ KhvN2 � �; (21)

Dc
Dt

¼
@

@z
nc

@c
@z

� �
þ

c
k
ðcc1KmvM2

þ cc3KhvN
2 � cc2F w�Þ; ð22Þ

where cc1; cc2 and cc3are model-specific constants
(Table 1), Fw is a wall proximity function, M and
N are shear and buoyancy frequencies, and e is the
dissipation rate. The following definitions apply

M2 ¼
@u

@z

� �2

þ
@v

@z

� �2

; � ¼ ðc0mÞ
3k1:5þm=nc�1=n

(23)

with the constant c0m set at
ffiffiffiffiffiffiffi
0:3

p
:

The generic length scale is defined as

c ¼ ðc0mÞ
pkm‘n; (24)

where the choice of the constants p, m and n

determines the specific closure model (Table 1).
The desired vertical viscosities and diffusivities are
related to k, c; and stability functions, in the form:
87

89

91

93

95

cc1 cc2 cþc3 c�c3
a Fw

1.44 1.92 1U0 �0U629 1

0.9 0.5 1U0 0.9 Eq. (29)

0.555 0.833 1U0 �0U642 1

1 1.22 1U0 0.05 1

layson (1994).
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Kmv ¼; cmk1=2‘; Khv ¼ c
0

mk1=2‘;

nck ¼
Kmv

sck
; nc ¼

Kmv

sc
; ð25Þ

where nck and nc: are vertical turbulent diffusivities
for k and c; and the Schmidt numbers sck and sc
are model-specific constants (Table 1). An alge-
braic stress model (e.g. Kantha and Clayson, 1994;
Canuto et al., 2001; or Galperin et al., 1988) is
required to define the stability functions. Using
Kantha and Clayson (1994), the stability functions
assume the form

cm ¼
ffiffiffi
2

p
sm c0m ¼

ffiffiffi
2

p
sh; (26)

with

sh ¼
0:4939

1� 30:19Gh

; sm ¼
0:392þ 17:07shGh

1� 6:127Gh

;

Gh ¼
Gh u � ðGh u � Gh cÞ

2

Gh u þ Gh0 � 2Gh c

ð27Þ

and

Gh u ¼ min Gh0;max �0:28;
N2‘2

2k

� �� �
;

Gh0 ¼ 0:0233; Gh c ¼ 0:02: ð28Þ

The wall proximity function, Fw, allows models
with a positive n (such as the MY25 analog, k2k‘)
to satisfy boundary conditions. Fw is trivially unity
for models with a negative n. For k2k‘;

Fw ¼ 1þ 1:33
‘

kdb


 �2
þ 0:25

‘

kds


 �2
; (29)

where db and ds are, respectively, the distance to
the computational bottom and to the sea surface:

dbðx; yÞ ¼ z � ½HR � hðx; yÞ�; (30)

dsðx; yÞ ¼ HR þ Zðx; yÞ � z: (31)

Table 1 shows the choices of constants p;m and
n associated with four common GLS options, the
resulting form of c; and the values of the constants
cc1; cc2; cc3; s

c
k and sc: Note that different values

of the buoyancy parameter cc3 are used for stable
ðc�c3Þ and unstable (cþc3) stratification. It is im-
portant to recognize that, for all models, limits on
length scales are applied at several stages of the
calculations, to ensure that mixing remains posi-
TED P
ROOF

tive. The choice of these limits is practically
important, yet theoretically ambiguous. While we
in general follow the recommendations of Warner
et al. (2004), we deviate from them in adopting the
same lower bound for c across all models, rather
than model-specific bounds. Specifically, we use
cmin ¼ 10�8 (the value recommended by Warner et
al. (2004) for k2k‘). We found this common lower
bound for c important to ensure consistency
across closure models, in the context of the
solution of selected benchmarks (e.g., Section 4.3).
Regardless of the specific closure model, the

solution of Eqs. (21) and (22) requires boundary
conditions at the free surface and the computa-
tional bottom. Rather conventionally, these
boundary conditions specify turbulent kinetic
energy as a function of the frictional velocities at
the appropriate surface, in the form:

k ¼
16:62=3

2
u2
� ¼

16:62=3

2
Kmv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@u

@x

� �2

þ
@v

@y

� �2
s

;

(32)

and specify c (note Eq. (24)) by additionally
setting the mixing length to the distances to the
free surface

‘ ¼ kdb or kds: (33)

We stated earlier that MY25 is not considered a
special case of GLS. Consistent with this view, the
ELCIRC implementation of MY25 is rather
conventional (Mellor and Yamada (1982), as
modified by Galperin et al. (1988)), and is coded
independently of GLS. Yet, it is important to
recognize that the main difference between MY25
and GLS is arguably in details of the internally
imposed length-scale limits: in MY25 the length
scale is only limited in the calculation of stability
functions, while in GLS the length scale is limited
in the calculation of production, wall proximity
function, and stability functions (Warner et al.,
2004). Other significant differences between MY25
and GLS include the stability functions (Galperin
et al. (1988) versus multiple options, such as our
choice of Kantha and Clayson (1994)) and the
buoyancy parameter cc3 (constant at 0.9 versus
dependent on stratification stability, Table 1).
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2.5. Definition of Coriolis factor and tidal potential

Rather conventionally, the earth rotation is
represented through the Coriolis acceleration in
the momentum equations. The Coriolis factor, f, is
a well known function of latitude,f:

f ðfÞ ¼ 2O sin f; (34)

where O ¼ 7:29� 10�5 rad s�1 is the angular velo-
city of rotation of the earth. To minimize
coordinate inconsistencies (Cartesian in ELCIRC,
spherical in Eq. (34)), we use a b-plane approxima-

tion for f:

f ¼ f C þ bCðy � yCÞ; (35)

where subscript C denotes the mid-latitude of the
domain and b is the local derivative of the Coriolis
factor.

The tidal potential is defined following Reid
(1990):

ĉðf; l; tÞ ¼
X
n;j

Cjnf jnðt0ÞLjðfÞ

cos
2pðt � t0Þ

Tjn

þ jlþ njnðt0Þ


 �
; ð36Þ

where

Cjn constants (e.g., Reid (1990)) characteriz-
ing the amplitude of tidal constituent n of
species j (j=0, declinational; j=1, diurnal;
j=2, semi-diurnal), (m)

t0 reference time
fjn(t0) nodal factors
njn(t0) astronomical arguments, (r)
LjðfÞ species-specific coefficients ðL0 ¼

sin2 f; L1 ¼ sinð2fÞ; L2 ¼ cos2 fÞ
Tjn period of constituent n of species j
N 89

91

93

95
U3. Numerical algorithm

3.1. Overview

The numerical algorithm of ELCIRC follows
the functional sequence illustrated in Fig. 2, and
has the following important features:
1.
 A semi-implicit scheme is used: (a) the baro-
tropic pressure gradient in the momentum
equation and the flux term in the continuity
equation are treated semi-implicitly, with im-
plicitness factor 0:5pyp1; (b) the vertical
viscosity term and the bottom boundary condi-
tion for the momentum equations are treated
fully implicitly; and (c) all other terms are
treated explicitly. This ensures both stability
(Casulli and Cattani, 1994) and computational
efficiency.
2.
ROOFThe normal component of the horizontal
momentum equations is solved simultaneously
with the depth-integrated continuity equation,
i.e., there is no mode splitting between these
equations. The total derivatives of the normal
velocity are discretized using Lagrangian back-
tracking, thus preventing advection from im-
posing stability constraints on the time step.
3.
  PThe vertical velocity is solved from the 3D
continuity equation using a finite volume
approach.
4.
EDThe tangential component of the horizontal
momentum equations is formally solved with
finite differences. The solution is computation-
ally efficient, because we re-use matrices formed
and inverted in the process of computing
normal velocities.
5.
 Once the full 3D velocity is recovered, the
transport equations for salinity and tempera-
ture are solved at both the polygonal vertices
(nodes) and centers of element sides, using finite
differences. This amounts to splitting each
element in the flow grid into four transport
sub-elements, and reduces numerical diffusion.
The solution requires backtracking along char-
acteristic lines, which is done anew (i.e., without
re-using the backtracking for normal velocities)
to account for the most recent flow field. After
the salinity and temperature are found, the
density is calculated from the equation of state,
and is fed back to the momentum equations at
the next time step (i.e., the baroclinic term is
treated fully explicitly).
6.
 If a two-and-a-half equation turbulence closure
is invoked, the eddy viscosity and diffusivity are
computed at each time step prior to the solution
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or  hot start

< <  1%

Back tracking
for momentum

~12% (4.7s)

Turbulence
Closure

MY25:~14% (5.5s).

2D continuityand3D
momentum: set-up

Back substitution for
horizontal velocity

<< 1% Update free 
surface
< <  1%3D continuityfor

vertical velocity
< <  1%

Back tracking for
scalar transport

~ 33% (12.8s)

Scalar transport for
salt & temperature 

~ 5% (2.1s)

~ 5% (2.88s
when called for) ?

?

End

y

n

y

n

i=i+1
Time step i

(including fileoutput)
Input of forcings

~13.7% (53s)

Output to file

2D continuity:solver
~ 1% (0.42s)

Tota CPU:386s

Initialization

Fig. 2. Functional sequence of the ELCIRC solution, and percentages of CPU used by major tasks. Note: Relative CPU varies with

the specific application. Numbers shown are for a time step with file output, within a recent river-to-ocean simulation of 3D baroclinic

Columbia River circulation (Baptista et al.)), in a single processor of a dual-processor 2.4GHz, 4Gb, Intel Xeon. The grid has 33,634

horizontal nodes, 50,389 horizontal elements and 62 vertical layers, for a total of E2.2M active prism faces.

3The choice of z-coordinates enables a natural treatment of

wetting and drying, but creates a stair-case representation of the

bottom that limits the representation of the bottom boundary

layer. A generalized sigma coordinate (cf. Song and Haidvogel,

1994) is being considered as an option for ELCIRC, but has not

yet been implemented.
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UNCORRof the momentum equation, using information
from the previous time step.

Features 1–3 follow Casulli and Zanolli (1998)
closely, while features 4–6 are deviations from
TRIM/UnTRIM strategies that we found useful in
controlling numerical diffusion (feature 5, cf.
Section 4.1.3), improving the representation of
Coriolis (feature 4, cf. Sections 4.2.1 and 4.2.2) and
providing qualitatively realistic representations of
plume dynamics (features 4–6, cf. Section 4.4).

3.2. Domain discretization

The 3D domain is discretized into a series of
layers in the vertical and into a combination of
triangular and/or quadrangular elements in the
horizontal (Fig. 3a). Unstretched z-coordinates are
used,3 with each layer extending throughout the
entire horizontal domain and being numbered
sequentially upwards. The thickness of the kth
layer (i.e., the distance between levels k�1 and k) is
Dzk; and the distance between half-levels is
Dzkþ1=2 ¼ ðDzk þ Dzkþ1Þ=2: Note that the thick-
nesses of the bottom and top layers include only
the portions occupied by water.
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(u,v)
S,T
k,l

S,T

S,T

S,T

(u,v)
S,T
k,l

(u,v)
S,T
k,l

η,w 

w

4

3

21 

(a)

(b) (c)

Fig. 3. ELCIRC grids are unstructured in the horizontal, with combinations of triangles and quadrangles (a), and use unstretched z-

coordinates in the vertical. As shown in (b), most variables (horizontal velocities, salinity, temperature and turbulent quantities) are

defined at half levels, either (or both) at nodes or side centers; water levels and vertical velocities are however defined at full levels, and

element centers. The definition of salinity and temperature at both nodes and side centers effectively means that horizontal elements are

split into four sub-elements for the purpose of solving the scalar-transport equations; for instance, interpolation at the foot of the

characteristic line shown in (c) is based only on sub-element 1.
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UNThe combined horizontal and vertical discreti-
zations result in the whole 3D domain being
divided into a series of prisms. The depths at each
side, calculated from depths at nodes, are assumed
to be constant, and the depths in each element are
taken to be the maximum of depths at its sides.
This results in a staircase representation of the
bottom. Since the layer thicknesses at sides,
elements, and nodes are in general different from
each other, superscripts ‘‘e’’ and ‘‘p’’ are added to
Dz to denote the elements and nodes, while Dz is
reserved for sides. Some of the other notations to
be used are:

Np number of nodes (vertices) in the hor-
izontal grid

Nv number of levels in the vertical grid
Ne number of elements in the horizontal grid
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Ns number of sides in the horizontal grid
js(i,j) (j=1, y, i34(i)) sides of element
i34(i) number of sides in element i

is(j,i) (i=1,2) two elements that share side j

ip(j,i) (i=1,2) two end nodes of side j

lj length of side j

Pi area of element i

dj distance between the two element centers
sharing side j

mj (m
e
j ; m

p
j ) bottom level index for side (element/

node) j

Mj (Me
j ; M

p
j ) free-surface level index for side

(element/node) j.

We generally use subscripts for spatial location,
and double subscripts for horizontal and vertical
level indices.

A staggering scheme is used for the definition of
variables (Fig. 3b). The elevation, defined at
elemental centers, is assumed to be constant within
each element. The normal and tangential compo-
nents of the horizontal velocity, which are the
actual unknowns to be solved from the momentum
equations, are defined at the center of each vertical
face of prism (i.e., at element side centers on half
levels). The vertical velocity w is located at element
centers on whole levels. The salinity, temperature
and density are defined at vertices and side centers,
for the reason outlined below.

As discussed by Casulli and Zanolli (1998),
orthogonality4 is, in a strict sense, a requirement
for calculation of finite difference approximations
of spatial gradients in unstructured grids. This
requirement might in practice be relaxed, but the
accuracy of solutions suffers from deviations from
orthogonality. While a second-order accuracy can
be achieved with uniform structured or unstruc-
tured orthogonal grids, only first-order accuracy is
attainable with non-uniform orthogonal grids. For
general non-orthogonal grids, the line connecting
the two element centroids is not perpendicular to
U

4Following Casulli and Zanolli (1998), a grid is defined as

orthogonal if within each element a point (‘‘center’’, although

not necessarily the geometric center) can be identified such that

the segment joining the centers of two adjacent elements, and

the side shared by the two elements, have a non-empty

intersection and are perpendicular to each other.
OF

the common side, which is an additional source of
errors.
Grid generation packages, including those

typically used by the authors (Turner and Baptista
(1991) and Zhang and Baptista (2000)), do not
specifically ensure grid orthogonality. The burden
of creating orthogonal or near-orthogonal grids is
thus on the user, and is non- trivial for complex
domains. In unconstrained parts of a computa-
tional domain, it is typically easy to generate
orthogonal grids based on quadrangles. In more
constrained regions, hybrid-element grids may be
used to avoid major deviations from orthogonality
(e.g., by selectively merging two non-orthogonal
triangles into a quadrangle, within a region where
the grid is predominantly formed by triangles).
91

93

95
TED P
R3.3. Solving the depth-integrated continuity and

horizontal momentum equations

A key to UnTRIM is that the solution of the
depth-integrated continuity equation and horizon-
tal momentum equations is conducted using local
(element-side based) coordinate systems. Follow-
ing Casulli and Zanolli (1998), we locally re-orient
(x,y) such that the x-axis points outside of element
is (j, 1), from the center of side j. Eqs. (3) and (4)
are invariant under a rotation in the (x, y) plane,
and thus they retain their form under these local
rotations. However, these equations now represent
local conservation of normal and tangential
momentum, respectively. For consistency, u and
v refer from here onward to normal and tangential
velocities.
Also, following Casulli and Zanolli (1998), we

impose local (and thus global) volume conserva-
tion by using a semi-implicit finite-volume ap-
proach to integrate the continuity equation, Eq.
(2), for element i:

PiðZnþ1
i � Zn

i Þ þ yDt
Xi34ðiÞ
l¼1

si;l‘jsj

XMjsj

k¼mjsj

Dzn
jsj;kunþ1

jsj;k

þ ð1� yÞDt
Xi34ðiÞ
l¼1

si;l ljsj

XMjsj

k¼mjsj

Dzn
jsj;kun

jsj;k ¼ 0;

i ¼ 1; . . . ;Ne; ð37Þ
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where y is the implicitness factor for temporal
discretization, jsj=js(i,l) and si,l is a sign:

si;l ¼
isðjsj; 1Þ þ isðjsj; 2Þ � 2i

isðjsj; 2Þ � isðjsj; 1Þ
: (38)

For stability reasons, a semi-implicit finite-
difference scheme is used to solve the normal
momentum equation for a side j:

Dzn
j;kðu

nþ1
j;k � u�

j;kÞ ¼ Dzn
j;kf jv

n
j;k Dt � Dzn

j;k

gDt

dj

y Znþ1
isðj;2Þ � Znþ1

isðj;1Þ

� h
þð1� yÞ Zn

isðj;2Þ � Zn
isðj;1Þ

� i

� Dzn
j;k

gDt

r0dj

XMj

l¼k

Dzn
l rn

isðj;2Þ;l � rn
isðj;1Þ;l

� "

�
Dzn

j;k

2
rn

isðj;2Þ;k � rn
isðj;1Þ;k

� �

þ Dt ðKmvÞj;k

unþ1
j;kþ1 � unþ1

j;k

Dzn
j;kþ1=2

"

�ðKmvÞj;k�1

unþ1
j;k � unþ1

j;k�1

Dzn
j;k�1=2

#

þ Dzn
j;kDt

@

@x
gaĉ�

Pa

r0


 �� �n

j;k

;

j ¼ 1; . . . ;Ns; k ¼ mj ; . . . ;Mj; ð39Þ

where u is the normal velocity, and u�
j;k is the

backtracked value at time step n at the foot of the
characteristic line (see Section 3.4). All the right-
hand side terms except for the elevation gradient
and the vertical viscosity terms are treated fully
explicitly. The discretized form of the tangential
momentum equation is similar.

The discretized continuity and momentum
equations can be written in compact matrix form
as

An
j Unþ1

j ¼ Gn
j � y g

Dt

dj

Znþ1
isðj;2Þ � Znþ1

isðj;1Þ

h i
DZn

j (40)

An
j V

nþ1
j ¼ Fn

j � yg
Dt

lj

Ẑnþ1
ipðj;2Þ � Ẑnþ1

ipðj;1Þ

h i
DZn

j (41)

Znþ1
i ¼ Zn

i �
yDt

Pi

Xi34ðiÞ
l¼1

si;l‘jsj DZn
jsj

h iT
Unþ1

jsj

�
ð1� yÞDt

Pi

Xi34ðiÞ
l¼1

si;l‘jsj DZn
jsj

h iT
Un

jsj ; ð42Þ

where Gn
j and Fn

j are vectors that combine all
TED P
ROOF

explicit terms (including the baroclinic forcing),
and where

Unþ1
j ¼

unþ1
j;Mj

..

.

unþ1
j;mj

2
6664

3
7775; Vnþ1

j ¼

vnþ1
j;Mj

..

.

vnþ1
j;mj

2
6664

3
7775; DZn

j ¼

Dzn
j;Mj

..

.

Dzn
j;mj

2
664

3
775:

(43)

Matrix A, after adjustment to include the
vertical boundary conditions (Eqs. (9) and (13))
and applicable horizontal boundary conditions,
remains tri-diagonal, and thus can be inverted
quite efficiently. Normal velocities can therefore be
expressed as

Unþ1
j ¼ ½An

j �
�1Gn

j � yg
Dt

dj

Znþ1
isðj;2Þ � Znþ1

isðj;1Þ

h i
½An

j �
�1DZn

j

(44)

and substitution of Eq. (44) into (42) leads to a set
of equations for elevations at all elements
(1pipNe):

Znþ1
i �

gy2 Dt2

Pi

Xi34ðiÞ
l¼1

si;l ljsj

djsj

DZn
jsj

h iT

An
jsj

h i�1

DZn
jsj Znþ1

isðjsj;2Þ � Znþ1
isðjsj;1Þ

h i

¼ Zn
i �

ð1� yÞDt

Pi

Xi34ðiÞ
l¼1

si;l ljsj DZn
jsj

h iT

Un
jsj

�
yDt

Pi

X3
l¼1

si;l ljsj DZn
jsj

h iT
An

jsj

h i�1

Gn
jsj ; ð45Þ

from which elevations can be solved. As indicated
in Casulli and Zanolli (1998), the coefficient matrix
resulting from the above system of equations is
symmetric and positive definite, and thus efficient
sparse matrix solvers like Jacobian Conjugate
Gradient can be utilized.
At open boundaries, elevations may be specified,

elevations may be nudged to specified values, or
transmissive boundary types (e.g., Flather (1987))
may be applied. Because strict transmissive
boundary conditions can be very involved for
unstructured grids, a simplified form is used, where
the open-boundary elevations are computed as the
average over all adjacent non-open boundary
elements, assuming that the phase speed there is
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5Positivity requires that solutions remain bounded by the

initial maxima and minima, in the absence of external sources

and sinks (and, thus, implies the absence of numerical

oscillations).
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equal to the average grid size divided by the time
step.

Once the elevations are known, normal velo-
cities can be computed at face centers by using Eq.
(44). UnTRIM converts these normal velocities
directly to the horizontal velocities at each node,
using purely geometric arguments. However, we
found this approach unsatisfactory in ELCIRC for
benchmarks where Coriolis is a significant factor
(e.g., Sections 4.2 and 4.4). Instead, we solve for
the tangential momentum equation, Eq. (41), prior
to mapping velocities at the nodes. Although more
time consuming than UnTRIM’s, this approach is
still computationally efficient. Indeed, it fully re-
uses matrix A, as formed and inverted for the
solution of the normal momentum equation.

Integral to the approach is, however, knowing
elevations at nodes, Ẑ; so that pressure gradients
along sides can be computed. We estimate nodal
elevations from elevations at element centers,
computed earlier through Eq. (45), by using the
formula

Ẑnþ1
i ¼

R
ZdSR
dS

¼

P
j

Pineði;jÞZnþ1
ineði;jÞP

j

Pineði;jÞ
; i ¼ 1; . . . ;Np;

(46)

where the integrations and summations are carried
out over a ‘‘ball’’ around node i, with contribu-
tions from all surrounding elements, ineði; jÞ: The
formula can be argued to be algebraically con-
sistent with volume conservation within the ball
(not shown).

3.4. Backtracking and interpolation along

characteristic lines

Both in the momentum equations (Section 3.3)
and in the equations of salt and heat conservation
(Section 3.6), we avoid usual Courant number
constraints by incorporating advection in total
derivatives, and solving the resulting equations in
an Eulerian–Lagrangian context. Integral to this
approach is the ability to backtrack characteristic
lines efficiently and accurately (e.g., see Oliveira
and Baptista, 1998), starting from known locations
at time n+1. Once the location of the foot of the
TED P
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characteristic lines at time n is found, initial
conditions at that time step can be obtained for
the variable of interest by either interpolation or
integration (Oliveira and Baptista, 1995).
In practice, backtracking is the single most time-

consuming part of our solution, a problem that is
aggravated by the fact that we backtrack twice:
first for the momentum equation, and then—using
updated flow fields and a larger set of character-
istic lines—again for the scalar-transport equa-
tions. Backtracking for momentum starts always
at side centers, while backtracking for salinity and
temperature starts both at side centers and nodes
(see Section 3.6). The approach is the same,
regardless of location. In all cases, backtracking
requires the 3D solution, backwards from n þ 1 to
n; of

dxi

dt
¼ um

i ðx1;x2;x3; tÞ with i ¼ 1; 2; 3; (47)

where m either stands for time step n (for
momentum) or denotes a linear interpolant
between n þ 1 and n (for salinity and temperature).
Hence, flow fields are always known beforehand.
As a compromise between accuracy and com-

putational efficiency, we backtrack using a simple
Euler integration of Eq. (47), but with a time step
smaller than Dt: The approach is illustrated in Fig.
4, and represents a deviation from more elabo-
rated strategies that we have used in 2D models
such as Baptista et al. (1984), Oliveira and Baptista
(1995), Wood et al. (1995) and Oliveira et al.
(2000). The reader is referred to Oliveira and
Baptista (1998) for an analysis on how tracking
errors may destroy the positivity and mass
conservation of solutions of the transport equa-
tion.
Also, in a deviation from our prior models, we

chose linear interpolation at the feet of the
characteristic lines for both momentum and
scalar-transport equations. The defining advan-
tage of linear interpolation is the positivity5 of the
solutions, a property that we found particularly
important in addressing the representation of
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t

Characteristic line
t+∆ 

Fig. 4. Backtracking of the characteristic lines (illustrated here in a 2D setting) is a time-consuming operation. It involves, for each

‘‘origin’’ at time t þ Dt; the 3D solution of Eq. (47). A simple Euler method is employed, but multiple tracking sub-steps are allowed

within the overall time step Dt: The number of sub-steps is imposed by the user, but might be overridden by code-controlled

adjustments accounting for local flow gradients.
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baroclinic forcings (e.g., see discussion in Section
3.6). The disadvantage is that linear interpolation
introduces numerical diffusion (Baptista (1987);
also, Section 4.1.3). To reduce numerical diffusion
in the solution of the salinity and temperature, we
sub-split (Fig. 3c) the original grid elements into
four before interpolating (which is the reason why
we solve the salt and heat balance equations at
both nodes and side centers). We do not use
splitting to solve the momentum equations, where
advection terms—albeit important—often do not
have as dominant a role; should the need arise, the
horizontal grid must thus be refined to reduce
numerical diffusion.

3.5. Vertical velocity solution

Defined as a constant within each element, the
vertical velocity can be calculated from the 3D
continuity equation through a finite-volume ap-
proach:

wnþ1
i;k ¼ wnþ1

i;k�1 �
1

Pi

Xi34ðiÞ
j¼1

si;j ljsjDzn
jsj;kunþ1

jsj;k;

k ¼ me
i ; . . . ;M

e
i ð48Þ

Although only the bottom boundary condition
wnþ1

i;me
i
�1 ¼ 0 is needed in this recursive formula, due

to volume conservation the free-surface condition
is also automatically satisfied, within a very small
closure error. This is expected because Eq. (2) is
TED P
RO

derived by integrating Eq. (1) over depth with
kinematic boundary conditions at the bottom and
free surface (cf., Luettich et al., 2002).
While much smaller in magnitude than the

horizontal velocities, the vertical velocity strongly
affects the stability of stratification in estuaries and
plumes. In our experience in the Columbia River
estuary, overestimation or parasitic oscillations in
the computation of vertical velocities can easily
transform a two-layer flow into a well-mixed flow.
Because the vertical velocity is a measure of the
horizontal divergence, this effectively means that
there is very little tolerance for numerical oscilla-
tions on the horizontal velocities. A practical
consequence is that, for strongly stratified flows,
time steps must be selected consistently with the
celerity of internal baroclinic waves (see also
Section 3.6).
3.6. Solving for salt and heat balances

The numerical solution for salinities and tem-
perature is obtained in an Eulerian–Lagrangian
framework by the finite-difference solution of Eq.
(5) or (6), at both nodes or side centers. An
example is given below, for the solution of salinity
at a side center:
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Dzn
i;k Snþ1

i;k � S�
i;k

� 
¼ Dt ðKhvÞi;k

Snþ1
i;kþ1 � Snþ1

i;k

Dzn
i;kþ1=2

"

�ðKhvÞi;k�1

Snþ1
i;k � Snþ1

i;k�1

Dzn
i;k�1=2

#

ði ¼ 1; . . . ;Ns; k ¼ mi; . . . ;MiÞ;

ð49Þ

where S is defined at half levels and S�
i;k is the value

at the foot of the characteristic lines. Very similar
equations result for temperature, and for solutions
at nodes rather than side centers.

After backtracking and local interpolation,
temperature and salinity are solved independently
at each vertical (node or side center) via Eq. (49) or
similar. In addition, Neuman-type boundary con-
ditions are imposed at both the bottom and free
surface, consistently with Section 2.3.3. Horizon-
tally, the salinity and temperature at open
boundaries are most often specified during inflow
and radiated freely during outflow (which the
backtracking allows for rather naturally).

We note that the continuity and momentum
equations are coupled to the salt and heat balance
equations via the baroclinic pressure term. This
term, if treated improperly, can in strongly
stratified regions (e.g. the Columbia River estuary)
create noise in the horizontal flow field, leading to
noise in the vertical velocity field, with the
potential to quickly annihilate stratification. Keys
to successfully handling baroclinic forcing appear
to be (a) the use of time steps limited by the speed
of propagation of internal baroclinic waves, rather
than of barotropic waves; and (b) positivity-
preserving strategies for transported quantities
(Section 3.4).

It is also important to avoid underestimating
baroclinic effects by overly diffusing the density
field. Numerical diffusion in salt and temperature
transport can be controlled by: using time steps
that lead to Courant numbers larger than unity,
thus reducing the number of required interpola-
tions (cf., Eq. (55), Section 4.1.3); and enabling
sufficient spatial resolution (including sub-split-
ting, Section 3.4) to resolve physically important
gradients.
TED P
ROOF

3.7. Parameterizing turbulence

The momentum and transport equations con-
tain vertical viscosity and diffusivity that must be
parameterized (Section 2.4). While no additional
equations must be solved with zero-equation
closures, both GLS and MY25 require two
additional transport equations. We consider here
the case of GLS. The turbulent kinetic energy and
mixing length are both defined at side centers and
at half levels, and the approach to solving the two
closure equations is similar to that for the scalar-
transport equations (e.g., Eq. (49)). However,
advection is neglected, and therefore no back-
tracking is involved: the resulting equation is
directly 1D in the vertical direction.
Following Warner et al. (2004), we enhance

numerical stability through two procedures. First,
the production terms are treated either explicitly or
implicitly depending on the sign. For example, the
equation for the generic length-scale variable c;
Eq. (22), is discretized as

Dzn
j;kðc

nþ1
j;k � cn

j;kÞ

¼ Dt ðncÞ
n
j;k

cnþ1
j;kþ1 � cnþ1

j;k

Dzn
j;kþ1=2

"
�ðncÞ

n
j;k�1

cnþ1
j;k � cnþ1

j;k�1

Dzn
j;k�1=2

#

þ M � DtDzn
j;kcc2½Fwðc

0
mÞ

3k1=2‘�1�nj;kc
nþ1
j;k ;

j ¼ 1; . . . ;Ns; k ¼ mj ; . . . ;Mj ; ð50Þ

where the production term is treated as:

M ¼

DtDzn
j;kðcc1KmvM2 þ cc3KhvN2Þ

n
j;k

cnþ1
j;k

kn
j;k
; if Mp0;

DtDzn
j;kðcc1KmvM2 þ cc3KhvN2Þ

n
j;k

cn
j;k

kn
j;k
; if M40:

8><
>:

ð51Þ

Secondly, the boundary conditions for the two
GLS equations are recast into flux form:

nck
@k

@z
¼ 0; at z ¼ HR � h or z ¼ HR þ Z;

(52)

nc
@c
@z

¼ knnc
c
‘
; at z ¼ HR � h; (53)
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nc
@c
@z

¼ �knnc
c
‘
; at z ¼ HR þ Z: (54)

Only after k and c are found with the above
boundary conditions, are the original boundary
conditions, Eqs. (32) and (33), enforced.

3.8. Solving for wetting and drying

One of the major advantages of the formula-
tions of Casulli and Cheng (1992) and of Casulli
and Zanolli (1998) is their natural and robust
handling of wetting and drying. We retain their
approach in ELCIRC, in what amounts to
primarily careful bookkeeping of indices. After
all unknowns have been found for time step n+1,
the free-surface indices are updated with the newly
computed elevations. Elements are dried if h þ

Zoh0 (a small positive number, h0; is used in the
code in lieu of zero in order to avoid underflow). It
is also noteworthy that in the limit of only one
vertical layer, the above formulation and numerics
automatically reduce to the 2D depth-integrated
version.
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4. Numerical benchmarks

Controlled numerical benchmarks have been
very useful in understanding and enhancing
ELCIRC. A sub-set of these benchmarks is
described below, organized under four themes:
basic numerical properties, Coriolis representa-
tion, representation of stratification, and repre-
sentation of qualitative plume behavior.

4.1. Basic numerical properties

Similarly to TRIM and UnTRIM, the under-
lying numerical algorithm of ELCIRC is well
adapted to large Courant numbers, and is volume
conserving, positivity preserving, low order, and
numerically diffusive (cf., Eq. (55)). The reader is
referred to Casulli and Cattani (1994) for con-
textual formal analysis of the stability and
accuracy of this type of method. Also useful is
the extensive body of literature available on
Eulerian–Lagrangian methods for scalar trans-
TED P
ROOF

port, including Baptista (1987), Oliveira and
Baptista (1995), Oliveira and Baptista (1998),
and Oliveira et al. (2000). In the following sub-
sections, we use simple benchmarks to illustrate
the key numerical properties of ELCIRC. Further
details on these and other benchmarks, including
input files to reproduce benchmark results, are
available electronically (CCALMR, 2003).

4.1.1. Volume conservation

Volume conservation is algorithmically enforced
through the use of a finite-volume strategy. In
practice, the testing of early versions of ELCIRC
revealed that substantial deviations from strict
volume conservation might result from ambiguity
in coding choices on the treatment of inter-element
discontinuities and wetting and drying. However,
attention to coding detail can virtually eliminate
volume conservation errors. New versions of
ELCIRC are now tested for volume conservation
through a benchmark that involves moving a fixed
discharge along an irregular riverbed, with both
horizontal and vertical complexity (Fig. 5a). This
benchmark is inspired on the need of cross-scale
models to correctly propagate freshwater volumes
and rates through river networks to estuaries and
ultimately the ocean. The desired result of the
benchmark is to exactly match inflow and outflow
discharges, at equilibrium. As illustrated in Fig.
5b, ELCIRC_v5.01 inflow and outflow discharges
at control transects do indeed match. Numerically,
the match is within 0.002% of the equilibrium
discharge.

4.1.2. Implictness factor

Casulli and Cattani (1994) and Casulli and
Zanolli (1998) showed that the judicious choice of
implicit or explicit treatment for each term of the
momentum equation is critical for the computa-
tional performance, algorithmic robustness and
accuracy of TRIM and UnTRIM (cf., Section 3.1).
Casulli and Cattani (1994) further suggest a
significant effect of the choice of the implicitness
factor, y; used for terms being treated semi-
implicitly. In particular, stability requires
0:5pyp1; and theoretical optimal accuracy is
obtained for y ¼ 0:5; with numerical damping
increasing progressively for larger y: While these
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Fig. 5. Volume conservation of successive ELCIRC implementations is systematically tested against the irregular riverine domain

shown in (a). Discharges are measured at control cross sections (transects 1 and 2). For several versions now ELCIRC results have

been consistently very good. Results for ELCIRC_v5.01 are shown in (b).

Y. Zhang et al. / Continental Shelf Research ] (]]]]) ]]]–]]]18
UNCORRE
guidelines are strictly valid only under idealized
conditions, they tend to be broadly useful.

Here, we use a conventional benchmark to
examine the role of y on ELCIRC accuracy for
depth-averaged long-wave propagation over a
linearly sloping bottom. The computational do-
main is a quarter annulus with inner and outer
radii of 60,960 and 152,400m (Fig. 6a). Water
depths at the inner (land) and outer (ocean)
boundaries are 10.02 and 25.05m, respectively.
An M2 tide of amplitude 0.3048m propagates
from the open ocean to the slope and is refracted
and reflected by the bottom and land boundaries.
Water is considered inviscid, and the bottom
frictionless. Assuming linearity (a reasonable
approximation, given the choice of water depths
and tidal amplitudes), an exact solution exists for
the problem (Lynch and Gray, 1978).
A convergence study, using several horizontal

grids, time steps and implicitness factors showed
that large time steps (and Courant numbers well
above unity) may be used in ELCIRC for this
barotropic problem without incurring instability,
provided 0:5pyp1: Results are presented in Fig.
6b for Dt ¼ 1047:93 s; and show the behavior of
error relative to the implicitness factor. Error
metrics shown are percentage errors relative to the
analytical solution of the amplitude of M2

elevations and radial velocities, at a node located
240m from the inner boundary. Only the stability
region is shown. As anticipated by the analysis of
Casulli and Cattani (1994), accuracy degrades
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Fig. 6. Long-wave propagation over a linearly sloping bottom. The horizontal discretization of the quarter annulus domain is shown

in (a). The problem is solved for a single vertical layer. Results, shown in (b) in the form of percentage errors for the amplitudes of M2

elevation and radial velocity, illustrate that accuracy degrades progressively with the increase of the implicitness factor within the

stability region (0:5pyp1).
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UNCORRECprogressively from y ¼ 0:5 to 1, reflecting increas-
ing numerical damping.

In practice, we often adopt y ¼ 0:6 to remain
close to optimal accuracy while eliminating or
minimizing any oscillations introduced by the
baroclinic terms not included in the analysis of
Casulli and Cattani (1994).

4.1.3. Transport in an uniform flow

Eulerian–Lagrangian solutions of the transport
equation have been extensively studied in the
literature and are commonly used in scientific and
engineering applications. The single largest advan-
tage of this class of methods is their ability to
handle Courant numbers larger than unity. Yet,
solutions are not strictly mass preserving (Oliveira
et al., 2000), require accurate tracking of char-
acteristic lines as a pre-condition for overall
accuracy and mass conservation (Oliveira and
Baptista, 1998), and may exhibit substantial
numerical diffusion depending on the choice of
the interpolation or integration approach used at
Tthe foot of the characteristic lines (Baptista, 1987;
Oliveira and Baptista, 1995). As discussed earlier,
we chose to implement in ELCIRC an adjustably
accurate tracking algorithm for characteristic
lines, to enable control over positivity preservation
and mass conservation. Also, we use simple linear
interpolation at the foot of the characteristic lines,
a choice driven by efficiency and positivity
considerations but known to induce numerical
diffusion—thus placing on the user the onus of
choosing an appropriate time step and spatial
resolution. To partially mitigate numerical diffu-
sion, ELCIRC splits—during the solution of the
scalar-transport equations—each element of the
numerical grid into four sub-elements (Fig. 3c),
which increases the dimensionless wavelength of
the transported fields.
In this section, we use the conventional problem

of advective transport of a scalar field in a uniform
flow, to show that ELCIRC follows expected
behavior relative to the theory of Eulerian–La-
grangian methods. The reference simulation con-
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sists of advecting a Gauss hill, with standard
deviation 1 km and amplitude 5 1C (above a
background temperature of 5 1C), in a flow field
constant in space and time with u=0.1m�1 s and
v ¼ 0: The problem was set up computationally
with a 30 km� 6 km rectangular channel of con-
stant depth 20m, which was then uniformly
meshed with quadrangles with Dx ¼ Dy ¼ 250m:
The correct solution is the transport of the Gauss
hill by the ambient flow without any deformation.
The problem is essentially 1D in the x-direction.
We can formally show that in this case the
ELCIRC algorithm has a diffusion-like leading-
order truncation error, of the form

� ¼
f 00

�

8
Dx2 fracðCuÞ 1� fracðCuÞð Þ; (55)

where Cu ¼ 2uD t=Dx is the Courant number
(defined to account for the splitting in sub-
elements), fracðCuÞ is the fractional part of the
Courant number, and f 00

� is the second derivative
of the solution at the foot of the characteristic line.

Fig. 7 synthesizes results of several ELCIRC
simulations. Fig. 7a shows that errors per time step
mimic the behavior predicted by Eq. (55). Fig. 7b
illustrates the diffusive nature of the underlying
algorithm, and shows that the use of larger time
steps improves accuracy after a set period of time.
This latter trend is common in Eulerian–Lagran-
gian methods, the explanation being that errors
per time step depend on fracðCuÞ rather than Cu;
and thus larger time steps imply less instances of a
similar error over a fixed period of time. Note that,
in spite of this trend, Eulerian–Lagrangian meth-
ods are numerically consistent, with the truncation
errors approaching zero when both Dx and Dt tend
to zero (Baptista, 1987). Finally, Fig. 7c is a
reminder that the method is only first order in
space.

4.2. Coriolis representation

Coriolis plays a major role in coastal dynamics,
and its correct representation is a critical require-
ment for cross-scale, river-to-ocean circulation
models. While early versions of ELCIRC were
unable to meet this requirement, the problem was
overcome by the inclusion of the momentum
TED P
ROOF

equation for the transversal velocities (Section
3.3), one of the significant deviations of ELCIRC
relative to UnTRIM. We present below results of
ELCIRC_v5.01 for two benchmarks that were
instrumental in identifying and remedying the
initial problems.

4.2.1. Geostrophic flow in a straight channel

In the presence of Coriolis, flow in a constrained
channel develops a lateral slope normal to the
mean flow direction. A steady-state analytical
solution for an inviscid fluid can be found by
balancing the pressure gradient with Coriolis
(Pond and Pickard, 1998). Matching this analy-
tical solution requires correct representation of
Coriolis. We consider here a 20 km� 1 km rectan-
gular channel of constant depth 20m, with the
right end linked to a large deep basin
(20 km� 5 km� 200m) to reduce downstream
boundary effects. We place the channel at 451N
latitude (i.e., f � 10�4 s�1), and impose a constant
flow of 1.98� 104m3 s�1 on the left end of the
channel. Surface elevations on the basin end are
kept at MSL. Both a uniform triangular grid
(Dx=125m; Dy=2km) and moderate non-uni-
form variations thereof were tested, with essen-
tially identical results. The vertical resolution Dz

varies from 5 to 100m, and the time step is set at
5min. A steady state is established shortly after a
1-day ramp-up. Away from the boundary, the flow
is essentially uniform inside the channel (Fig. 8a,
b), with a maximum error in the computed velocity
of about 1 cm/s (or 1% of the theoretical velocity
of 1m s�1). A nearly linear elevation slope is
established normal to the flow, and compares well
with the analytical solution (Fig. 8c).

4.2.2. Ekman dynamics

Away from the equator, wind blowing over the
ocean leads to circulation patterns of major
oceanographic and ecological relevance. Ekman

dynamics (e.g., see Pond and Pickard, 1998)
describes the expected behavior for a steady wind
blowing over an infinitely deep and wide ocean
with constant density, assuming a balance between
friction (wind stress and vertical eddy viscosity)
and Coriolis. The analytical solution shows
currents at an angle with the direction of the
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Fig. 7. Advection of a Gauss Hill in an uniform flow. (a) Errors per time step depend on the fractional part of the Courant number, as

anticipated by Eq. (55). Results shown are for a fixed Dx ¼ 250m; and variable Dt: (b) Numerical damping at a fixed time increases

with decreasing time step. Results shown are for a fixed Dx ¼ 250m: (c) Errors as a function of Dx; showing first-order convergence.

Results shown are for a fixed Dt ¼ 500 s:
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to the right of the wind direction at the
surface, in the northern hemisphere, and rotating
with depth in a spiral pattern known as the Ekman

spiral. At the Ekman depth, the direction of the
wind-driven current is exactly opposite to its
direction at the surface. The velocity of Ekman

currents decays exponentially with depth, from
about 1.5% of the wind speed at the sea surface to
0.06% at the Ekman depth.
We describe in this section ELCIRC_5.01
solutions for an Ekman dynamics benchmark
problem. We consider a square domain of
100 km� 100 km with a flat (50m in depth) and
frictionless bottom (to approximate an infinite
depth) at about 451N latitude (fE10�4 s�1). The
uniform wind is set at 10m s�1, and the constant
vertical eddy viscosity at 10�4m2 s�1. The hor-
izontal resolution is uniform with Dx ¼ Dy ¼

2 km; and Dz varies from 0.5 at the surface to
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Fig. 8. Geostrophic flow in a straight channel, for a uniform grid. (a) Isolines of elevation after 5 days. (b) Cross-sectional velocity

magnitudes, at x=10km (exact solution is 1m s�1). (c) Comparison of analytical and numerical solutions for elevation at x=10km.
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UNCO27m at the bottom (we have also conducted tests
with moderately non-uniform grid variations, with
essentially the same results). The elevation is
clamped at the MSL on the four edges of the
square domain. The time step is set at 5min. The
non-linear advection terms are turned off to
facilitate comparison with the analytical solution.
To study the sensitivity of the solution with respect
to the wind direction, we applied two wind
directions of 901 (‘‘North’’) and 601 to the
horizontal.
A quasi-steady state, with small inertial pertur-
bations, is established shortly after the ramp-up
period (which is 1 day in this case), with uniform
velocity at each layer (except for slight variations
near the boundary). Other than a rigid-body
rotation, the solution is not sensitive to the choice
of wind direction, thus suggesting the correct
treatment of Coriolis in the numerical scheme. The
vertical profiles of velocity at the center of the
domain, averaged over 3 days after ramp-up, are
compared with the analytical solution (Fig. 9a–d).
The comparison is generally excellent inside the
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Fig. 9. Ekman dynamics. Comparison of analytical and steady-state ELCIRC solutions at the center of a square domain, under

alternative wind directions. (a) Velocity magnitude. (b) Error in velocity magnitude. (c) Velocity direction. (d) Error in velocity

direction.
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UNCOEkman layer (below the Ekman depth the velocity
is very small and the comparison between the
numerical and analytical solutions has no practical
significance). Errors increase right at the surface of
the Ekman layer, an artifact of the representation
of normal and tangential velocities at half levels
(rather than exactly at the surface).

4.3. Adjustment under gravity

Stratification plays an important role in the
dynamics of estuarine and marine systems. A
demanding benchmark for the ability of circula-
tion models to represent stratification involves the
gravitational adjustment of two fluids of different
density, initially separated by a vertical wall
(Wang, 1984). Once the vertical wall is removed,
the fluids adjust through two density fronts
traveling in opposite directions, to eventually form
a stably stratified two-layer flow. While there is no
strict analytical solution for this problem, models
such as ROMS and SEOM have been extensively
tested against it, with simulations evaluated both
relative to qualitative behavior (e.g., front sharp-
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ness and solution smoothness) and quantitative
metrics (celerity of propagation of density fronts;
and maximum and minimum density).

The ELCIRC_v5.01 solution of the inviscid
form of this problem is shown in Fig. 10a, with
discretization and parameter choices described in
the caption. Associated quantitative metrics show
that the expected maxima and minima of density
are exactly preserved—a consequence of positiv-
ity—but that the speed of the gravitational
adjustment is about 84% of that predicted by
linear theory. Increasing the vertical grid resolu-
tion by a factor of 4 increases the numerical
celerity to 88% of the linear theory value.

Using two-and-a-half equation turbulent clo-
sures to characterize vertical mixing slightly
reduces the sharpness of the solution, but does
not substantially change the celerity of the adjust-
ment, and does not destroy positivity. All GLS
closures represented in ELCIRC_v5.01 provide
nearly indistinguishable results, shown in Fig. 10b
for k2k‘: Results for MY25 (not shown) are
similar. This similarity should not be extrapolated
to more complex problems, as shown elsewhere
(Baptista et al., 2004).
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REC4.4. Qualitative plume behavior

Large freshwater plumes are dramatic and
important oceanographic features, for which
representation numerical models must be able to
preserve the dynamic balance between inertia,
UNCOR

Fig. 10. Adjustment under gravity of two fluids of different densities,

in a 64 km� 20 km� 20m domain, with Dx=Dy=500m, Dz=1m,

Background temperature was uniformly set at 4 1C. Initial salinity w

allowing for a sharp but continuous transition between 6.25 and 0 psu

after 12 h, in the form of isolines every 0.5 psu, are shown for (a) inv
TED P
ROOF

vertical mixing, stratification and Coriolis. A
particularly demanding benchmark involves the
simulation of the plume resulting from a fresh-
water discharge in a quiescent ocean, under strong
Coriolis (e.g., at a mid-latitude). While no
analytical solution exists, key features of the
expected behavior include anti-cyclonic turning
of the plume outside the river mouth, development
of a narrow coastal jet in the direction of Kelvin
waves, very limited penetration on the opposite
(‘‘upstream’’) direction, and surface trapping of
the plume.
We consider here the same forcings, physics and

computational domain used by Garcia-Berdeal et
al. (2002) to solve this benchmark with ECOM3D,
a POM derivative. The settings are loosely inspired
by typical winter conditions for the Columbia
River plume. The domain consists of a deep
rectangular ‘‘ocean’’ basin (140 km� 400 km),
with a linearly sloping bottom (20m depth at the
coast and 300m at the offshore boundary). Joining
the ‘‘ocean’’ at 120 km north of the south
boundary is an estuary of size 10 km� 4 km with
a constant depth of 20m. At the upstream river
boundary, freshwater is steadily discharged into
the top 10m of the vertical column at a constant
rate of 7000m3 s�1. The south, west and north
sides of the ‘‘ocean’’ are open. Coriolis is set at
f=10�4 s�1. The simulation is cold started with a
1-day ramp-up. Vertical mixing is represented with
MY25, with background viscosity and diffusivity
of 10�6m2 s�1. We also adopted the horizontal
83
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initially separated by a vertical ‘‘wall’’. Solutions were obtained

and Dt=300 s. No bottom friction or Coriolis were applied.

as imposed as S ¼ ð6:25=2Þ½1� tanh½ðx � 32; 000Þ=1000��; ; thus
, respectively, to the left and right of the initial ‘‘wall’’. Results

iscid laminar conditions, and (b) for a k2k‘ closure.
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discretization of Garcia-Berdeal et al. (2002), with
a quadrangular grid with Dx=1.5 km and
Dy=2km. However, the differences between
ECOM3D and ELCIRC require different strate-
gies for the vertical discretization: rather than s-
coordinates, we used 43 z-levels with Dz varying
from 0.5 to 117m. We used Dt=5min.

Surface salinities at the end of a 14-day
simulation are depicted in Fig. 11, and show a
very good qualitative match both with expected
key features and with the results of Garcia-Berdeal
et al. (2002). This suggests that ELCIRC_v5.01
has the potential to represent, individually and in
overall balance, the relevant physical processes
involved in the description of complex plume
behavior.
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Fig. 11. Idealized plume under mid-latitude, Northern hemi-

sphere Coriolis. Results are shown after 14 days, in the form of

isolines of salinity at 4 psu increments. Simulations represent

expected plume characteristics: anti-cyclonic turning outside the

river mouth, development of a narrow coastal jet in the

northern direction, very limited penetration of freshwater

southwards, and (not shown) surface trapping.

UNCORREC

5. Concluding remarks

This paper presents the formulation and basic
skill assessment of ELCIRC, an open-source
numerical model for cross-scale simulation of
river-to-ocean 3D circulation. A member by
conceptual affinity, although not by implementa-
tion, of the class of finite volume Eulerian–La-
grangian models introduced by Casulli and Cheng
(1992) and Casulli and Zanolli (1998), ELCIRC
fills a void by opening such class of models to
broad community use and feedback.

ELCIRC is a low-order model, which requires
highly resolved horizontal and vertical grids, but
enables large time steps (with Courant numbers in
excess of unity) and appears capable of addressing
a large variety of riverine and marine processes.
The low-order and Eulerian–lagrangian nature of
solution strategies in ELCIRC are in dramatic
contrast with those of community models such as
ADCIRC, QUODDY, POM, ROMS and SEOM,
thus providing a truly distinctive alternative.

The Columbia River system, with its diverse
challenges and tightly coupled scales and pro-
cesses, provides an example of an application
extremely well suited to a model like ELCIRC.
Indeed, ELCIRC is now at the core of the
circulation modeling system that we have been
developing for the Columbia River, and supports
semi-operational generation of multi-year simula-
tions and routine daily forecasts of 3D baroclinic
estuarine and plume circulation (Baptista et al.,
2004).
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However, ELCIRC is still an emerging model.
On-going developments and other desirable efforts
include formulation and algorithm alternatives,
MPI-based parallelization in distributed-memory
computer clusters, and extension to ecological
processes. Priority formulation and algorithm
alternatives include a non-hydrostatic formula-
tion; a fully conservative, higher-order solution of
scalar transports; and vertically stretched coordi-
nates.
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Appendix A: Surface fluxes of heat and momentum

Atmospheric boundary conditions are required
to model the exchange of heat and momentum
between the atmosphere and the surface. We
describe here the representation of exchanges
adopted in ELCIRC when results from weather
models are available as forcings. An alternative,
more simplified, approach to representing momen-
tum exchanges is described in the text (Section
2.3.1).
The total heat transfer across the air–water

interface (into the water) is commonly described as

Htot #¼ ð1� AÞRs # þ RIR # �RIR "ð Þ � S � E;

(56)

where Htot # is the net downwards heat flux at the
air–water interface, A is the albedo of the surface,
Rs # is the downwelling solar radiative flux at
surface, RIR # and RIR " are the down/upwelling
infrared radiative fluxes a the surface, S is the
turbulent flux of sensible heat (upwelling), and E is
the turbulent flux of latent heat (upwelling).
As stated in Section 2.3.3, the non-solar heat

fluxes

H�
tot # ¼ RIR # �RIR "ð Þ � S � E at z ¼ HR þ Z

(57)

are in ELCIRC applied as a surface boundary
condition, Eq. (16), to the heat transport equation,
Eq. (6). This is appropriate because both the
infrared and turbulent fluxes essentially act at the
surface of the water. Conversely, solar radiation is
penetrative. The attenuation of solar radiation acts
as a heat source within the water column, and is
thus better expressed directly in Eq. (6), with

_Q ¼
@R�

s

@z
: (58)

The vertical profile of solar radiation is attenu-
ated as in Paulson and Simpson (1977), given a
predefined water type (Jerlov, 1968):

R�
s ðdsÞ ¼ ð1� AÞRs # <e�dS=d1 þ ð1�<Þe�dS=d2

h i
;

(59)

where ds is the water depth (defined in Eq. (31)),
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and d1; d2; and < are constants characterizing the
turbidity of the chosen water type.

The downwelling radiative fluxes in Eqs. (57)
and (58) are common output products of numer-
ical weather prediction models, and the upwelling
infrared radiation may be approximated as the
blackbody radiative flux from the water’s surface,

RIR "¼2 sT4
sfc; (60)

where 2 is the emissivity ð� 1Þ; and s is the
Stefan–Boltzmann constant.

The turbulent fluxes of heat ðS;EÞ and momen-
tum (t; Eq. (9)) are parameterized using the bulk
aerodynamic formulation of Zeng et al. (1998).
This parameterization has specifically been de-
signed for improved accuracy in high-wind re-
gimes, and takes into account surface layer
stability, free convection, and variable roughness
lengths:

S ¼ �racpau�T�; E ¼ �raLeu�q�; t ¼ rau2
�;

(61)

where T�; u�; and q� are scaling parameters for air
temperature, air velocity, and specific humidity; ra

is the surface air density, cpa is the specific heat of
air, and Le is the latent heat of vaporization. The
scaling parameters are defined using the dimen-
sionless flux–gradient relations of Monin–Obu-
khov similarity theory, and must be solved for
iteratively. They depend upon near-surface tem-
peratures or water and air, wind speed, and
specific humidity, as well as surface atmospheric
pressure (all of which may also be obtained from
numerical weather predictions).
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